# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F class SKDLoss(nn.Layer): """ Spherical Knowledge Distillation paper: https://arxiv.org/pdf/2010.07485.pdf code reference: https://github.com/forjiuzhou/Spherical-Knowledge-Distillation """ def __init__(self, temperature, multiplier=2.0, alpha=0.9, use_target_as_gt=False): super().__init__() self.temperature = temperature self.multiplier = multiplier self.alpha = alpha self.use_target_as_gt = use_target_as_gt def forward(self, logits_student, logits_teacher, target=None): """Compute Spherical Knowledge Distillation loss. Args: logits_student: student's logits with shape (batch_size, num_classes) logits_teacher: teacher's logits with shape (batch_size, num_classes) """ if target is None or self.use_target_as_gt: target = logits_teacher.argmax(axis=-1) target = F.one_hot( target.reshape([-1]), num_classes=logits_student[0].shape[0]) logits_student = F.layer_norm( logits_student, logits_student.shape[1:], weight=None, bias=None, epsilon=1e-7) * self.multiplier logits_teacher = F.layer_norm( logits_teacher, logits_teacher.shape[1:], weight=None, bias=None, epsilon=1e-7) * self.multiplier kd_loss = -paddle.sum(F.softmax(logits_teacher / self.temperature) * F.log_softmax(logits_student / self.temperature), axis=1) kd_loss = paddle.mean(kd_loss) * self.temperature**2 ce_loss = paddle.mean(-paddle.sum( target * F.log_softmax(logits_student), axis=1)) return kd_loss * self.alpha + ce_loss * (1 - self.alpha)