# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import shutil from functools import partial import importlib import numpy import numpy as np import paddle import paddle.nn.functional as F def build_postprocess(config): if config is None: return None mod = importlib.import_module(__name__) config = copy.deepcopy(config) main_indicator = config.pop( "main_indicator") if "main_indicator" in config else None main_indicator = main_indicator if main_indicator else "" func_list = [] for func in config: func_list.append(getattr(mod, func)(**config[func])) return PostProcesser(func_list, main_indicator) def parse_class_id_map(class_id_map_file, delimiter): if class_id_map_file is None: return None if not os.path.exists(class_id_map_file): print( "Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!" ) return None try: class_id_map = {} with open(class_id_map_file, "r") as fin: lines = fin.readlines() for line in lines: partition = line.split("\n")[0].partition(delimiter) class_id_map[int(partition[0])] = str(partition[-1]) except Exception as ex: print(ex) class_id_map = None return class_id_map class PostProcesser(object): def __init__(self, func_list, main_indicator="Topk"): self.func_list = func_list self.main_indicator = main_indicator def __call__(self, x, image_file=None): rtn = None for func in self.func_list: tmp = func(x, image_file) if type(func).__name__ in self.main_indicator: rtn = tmp return rtn class ThreshOutput(object): def __init__(self, threshold=0, default_label_index=0, label_0="0", label_1="1", class_id_map_file=None, delimiter=None): self.threshold = threshold self.default_label_index = default_label_index self.label_0 = label_0 self.label_1 = label_1 delimiter = delimiter if delimiter is not None else " " self.class_id_map = parse_class_id_map(class_id_map_file, delimiter) def __call__(self, x, file_names=None): def binary_classification(x): y = [] for idx, probs in enumerate(x): score = probs[1] if score < self.threshold: result = { "class_ids": [0], "scores": [1 - score], "label_names": [self.label_0] } else: result = { "class_ids": [1], "scores": [score], "label_names": [self.label_1] } if file_names is not None: result["file_name"] = file_names[idx] y.append(result) return y def multi_classification(x): y = [] for idx, probs in enumerate(x): index = probs.argsort(axis=0)[::-1].astype("int32") top1_id = index[0] top1_score = probs[top1_id] if top1_score > self.threshold: rtn_id = top1_id else: rtn_id = self.default_label_index label_name = self.class_id_map[ rtn_id] if self.class_id_map is not None else "" result = { "class_ids": [rtn_id], "scores": [probs[rtn_id]], "label_names": [label_name] } if file_names is not None: result["file_name"] = file_names[idx] y.append(result) return y if file_names is not None: assert x.shape[0] == len(file_names) if x.shape[1] == 2: return binary_classification(x) else: return multi_classification(x) class ScoreOutput(object): def __init__(self, decimal_places): self.decimal_places = decimal_places def __call__(self, x, file_names=None): y = [] for idx, probs in enumerate(x): score = np.around(x[idx], self.decimal_places) result = {"scores": score} if file_names is not None: result["file_name"] = file_names[idx] y.append(result) return y class Topk(object): def __init__(self, topk=1, class_id_map_file=None, delimiter=None, label_list=None): assert isinstance(topk, (int, )) self.topk = topk delimiter = delimiter if delimiter is not None else " " self.class_id_map = parse_class_id_map( class_id_map_file, delimiter) if not label_list else label_list def __call__(self, x, file_names=None): if file_names is not None: assert x.shape[0] == len(file_names) y = [] for idx, probs in enumerate(x): index = probs.argsort(axis=0)[-self.topk:][::-1].astype("int32") clas_id_list = [] score_list = [] label_name_list = [] for i in index: clas_id_list.append(i.item()) score_list.append(probs[i].item()) if self.class_id_map is not None: label_name_list.append(self.class_id_map[i.item()]) result = { "class_ids": clas_id_list, "scores": np.around( score_list, decimals=5).tolist(), } if file_names is not None: result["file_name"] = file_names[idx] if label_name_list is not None: result["label_names"] = label_name_list y.append(result) return y class MultiLabelThreshOutput(object): def __init__(self, threshold=0.5, class_id_map_file=None, delimiter=None): self.threshold = threshold delimiter = delimiter if delimiter is not None else " " self.class_id_map = parse_class_id_map(class_id_map_file, delimiter) def __call__(self, x, file_names=None): y = [] for idx, probs in enumerate(x): index = np.where(probs >= self.threshold)[0].astype("int32") clas_id_list = [] score_list = [] label_name_list = [] for i in index: clas_id_list.append(i.item()) score_list.append(probs[i].item()) if self.class_id_map is not None: label_name_list.append(self.class_id_map[i.item()]) result = { "class_ids": clas_id_list, "scores": np.around( score_list, decimals=5).tolist(), "label_names": label_name_list } if file_names is not None: result["file_name"] = file_names[idx] y.append(result) return y class SavePreLabel(object): def __init__(self, save_dir): if save_dir is None: raise Exception( "Please specify save_dir if SavePreLabel specified.") self.save_dir = partial(os.path.join, save_dir) def __call__(self, x, file_names=None): if file_names is None: return assert x.shape[0] == len(file_names) for idx, probs in enumerate(x): index = probs.argsort(axis=0)[-1].astype("int32") self.save(index, file_names[idx]) def save(self, id, image_file): output_dir = self.save_dir(str(id)) os.makedirs(output_dir, exist_ok=True) shutil.copy(image_file, output_dir) class Binarize(object): def __init__(self, method="round"): self.method = method self.unit = np.array([[128, 64, 32, 16, 8, 4, 2, 1]]).T def __call__(self, x, file_names=None): if self.method == "round": x = np.round(x + 1).astype("uint8") - 1 if self.method == "sign": x = ((np.sign(x) + 1) / 2).astype("uint8") embedding_size = x.shape[1] assert embedding_size % 8 == 0, "The Binary index only support vectors with sizes multiple of 8" byte = np.zeros([x.shape[0], embedding_size // 8], dtype=np.uint8) for i in range(embedding_size // 8): byte[:, i:i + 1] = np.dot(x[:, i * 8:(i + 1) * 8], self.unit) return byte class PersonAttribute(object): def __init__(self, threshold=0.5, glasses_threshold=0.3, hold_threshold=0.6): self.threshold = threshold self.glasses_threshold = glasses_threshold self.hold_threshold = hold_threshold def __call__(self, batch_preds, file_names=None): # postprocess output of predictor age_list = ['AgeLess18', 'Age18-60', 'AgeOver60'] direct_list = ['Front', 'Side', 'Back'] bag_list = ['HandBag', 'ShoulderBag', 'Backpack'] upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice'] lower_list = [ 'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts', 'Skirt&Dress' ] batch_res = [] for res in batch_preds: res = res.tolist() label_res = [] # gender gender = 'Female' if res[22] > self.threshold else 'Male' label_res.append(gender) # age age = age_list[np.argmax(res[19:22])] label_res.append(age) # direction direction = direct_list[np.argmax(res[23:])] label_res.append(direction) # glasses glasses = 'Glasses: ' if res[1] > self.glasses_threshold: glasses += 'True' else: glasses += 'False' label_res.append(glasses) # hat hat = 'Hat: ' if res[0] > self.threshold: hat += 'True' else: hat += 'False' label_res.append(hat) # hold obj hold_obj = 'HoldObjectsInFront: ' if res[18] > self.hold_threshold: hold_obj += 'True' else: hold_obj += 'False' label_res.append(hold_obj) # bag bag = bag_list[np.argmax(res[15:18])] bag_score = res[15 + np.argmax(res[15:18])] bag_label = bag if bag_score > self.threshold else 'No bag' label_res.append(bag_label) # upper upper_res = res[4:8] upper_label = 'Upper:' sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve' upper_label += ' {}'.format(sleeve) for i, r in enumerate(upper_res): if r > self.threshold: upper_label += ' {}'.format(upper_list[i]) label_res.append(upper_label) # lower lower_res = res[8:14] lower_label = 'Lower: ' has_lower = False for i, l in enumerate(lower_res): if l > self.threshold: lower_label += ' {}'.format(lower_list[i]) has_lower = True if not has_lower: lower_label += ' {}'.format(lower_list[np.argmax(lower_res)]) label_res.append(lower_label) # shoe shoe = 'Boots' if res[14] > self.threshold else 'No boots' label_res.append(shoe) threshold_list = [0.5] * len(res) threshold_list[1] = self.glasses_threshold threshold_list[18] = self.hold_threshold pred_res = (np.array(res) > np.array(threshold_list) ).astype(np.int8).tolist() batch_res.append({"attributes": label_res, "output": pred_res}) return batch_res class FaceAttribute(object): def __init__(self, threshold=0.65, convert_cn=False): self.threshold = threshold self.convert_cn = convert_cn def __call__(self, x, file_names=None): attribute_list = [ ["CheekWhiskers", "刚长出的双颊胡须"], ["ArchedEyebrows", "柳叶眉"], ["Attractive", "吸引人的"], ["BagsUnderEyes", "眼袋"], ["Bald", "秃头"], ["Bangs", "刘海"], ["BigLips", "大嘴唇"], ["BigNose", "大鼻子"], ["BlackHair", "黑发"], ["BlondHair", "金发"], ["Blurry", "模糊的"], ["BrownHair", "棕发"], ["BushyEyebrows", "浓眉"], ["Chubby", "圆胖的"], ["DoubleChin", "双下巴"], ["Eyeglasses", "带眼镜"], ["Goatee", "山羊胡子"], ["GrayHair", "灰发或白发"], ["HeavyMakeup", "浓妆"], ["HighCheekbones", "高颧骨"], ["Male", "男性"], ["MouthSlightlyOpen", "微微张开嘴巴"], ["Mustache", "胡子"], ["NarrowEyes", "细长的眼睛"], ["NoBeard", "无胡子"], ["OvalFace", "椭圆形的脸"], ["PaleSkin", "苍白的皮肤"], ["PointyNose", "尖鼻子"], ["RecedingHairline", "发际线后移"], ["RosyCheeks", "红润的双颊"], ["Sideburns", "连鬓胡子"], ["Smiling", "微笑"], ["StraightHair", "直发"], ["WavyHair", "卷发"], ["WearingEarrings", "戴着耳环"], ["WearingHat", "戴着帽子"], ["WearingLipstick", "涂了唇膏"], ["WearingNecklace", "戴着项链"], ["WearingNecktie", "戴着领带"], ["Young", "年轻人"] ] gender_list = [["Male", "男性"], ["Female", "女性"]] age_list = [["Young", "年轻人"], ["Old", "老年人"]] batch_res = [] index = 1 if self.convert_cn else 0 for idx, res in enumerate(x): res = res.tolist() label_res = [] threshold_list = [self.threshold] * len(res) pred_res = (np.array(res) > np.array(threshold_list) ).astype(np.int8).tolist() for i, value in enumerate(pred_res): if i == 20: label_res.append(gender_list[0][index] if value == 1 else gender_list[1][index]) elif i == 39: label_res.append(age_list[0][index] if value == 1 else age_list[1][index]) else: if value == 1: label_res.append(attribute_list[i][index]) batch_res.append({"attributes": label_res, "output": pred_res}) return batch_res class VehicleAttribute(object): def __init__(self, color_threshold=0.5, type_threshold=0.5): self.color_threshold = color_threshold self.type_threshold = type_threshold self.color_list = [ "yellow", "orange", "green", "gray", "red", "blue", "white", "golden", "brown", "black" ] self.type_list = [ "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck", "estate" ] def __call__(self, batch_preds, file_names=None): # postprocess output of predictor batch_res = [] for res in batch_preds: res = res.tolist() label_res = [] color_idx = np.argmax(res[:10]) type_idx = np.argmax(res[10:]) if res[color_idx] >= self.color_threshold: color_info = f"Color: ({self.color_list[color_idx]}, prob: {res[color_idx]})" else: color_info = "Color unknown" if res[type_idx + 10] >= self.type_threshold: type_info = f"Type: ({self.type_list[type_idx]}, prob: {res[type_idx + 10]})" else: type_info = "Type unknown" label_res = f"{color_info}, {type_info}" threshold_list = [self.color_threshold ] * 10 + [self.type_threshold] * 9 pred_res = (np.array(res) > np.array(threshold_list) ).astype(np.int8).tolist() batch_res.append({"attributes": label_res, "output": pred_res}) return batch_res class TableAttribute(object): def __init__( self, source_threshold=0.5, number_threshold=0.5, color_threshold=0.5, clarity_threshold=0.5, obstruction_threshold=0.5, angle_threshold=0.5, ): self.source_threshold = source_threshold self.number_threshold = number_threshold self.color_threshold = color_threshold self.clarity_threshold = clarity_threshold self.obstruction_threshold = obstruction_threshold self.angle_threshold = angle_threshold def __call__(self, batch_preds, file_names=None): # postprocess output of predictor batch_res = [] for res in batch_preds: res = res.tolist() label_res = [] source = 'Scanned' if res[0] > self.source_threshold else 'Photo' number = 'Little' if res[1] > self.number_threshold else 'Numerous' color = 'Black-and-White' if res[ 2] > self.color_threshold else 'Multicolor' clarity = 'Clear' if res[3] > self.clarity_threshold else 'Blurry' obstruction = 'Without-Obstacles' if res[ 4] > self.number_threshold else 'With-Obstacles' angle = 'Horizontal' if res[ 5] > self.number_threshold else 'Tilted' label_res = [source, number, color, clarity, obstruction, angle] threshold_list = [ self.source_threshold, self.number_threshold, self.color_threshold, self.clarity_threshold, self.obstruction_threshold, self.angle_threshold ] pred_res = (np.array(res) > np.array(threshold_list) ).astype(np.int8).tolist() batch_res.append({"attributes": label_res, "output": pred_res}) return batch_res