# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..'))) sys.path.append( os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools'))) from ppcls.arch import backbone from ppcls.utils.save_load import load_dygraph_pretrain import paddle import paddle.nn.functional as F from paddle.jit import to_static from paddleslim.dygraph.quant import QAT from pact_helper import get_default_quant_config def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", type=str) parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("-o", "--output_path", type=str, default="./inference") parser.add_argument("--class_dim", type=int, default=1000) parser.add_argument("--load_static_weights", type=str2bool, default=False) parser.add_argument("--img_size", type=int, default=224) return parser.parse_args() class Net(paddle.nn.Layer): def __init__(self, net, class_dim, model=None): super(Net, self).__init__() self.pre_net = net(class_dim=class_dim) self.model = model def forward(self, inputs): x = self.pre_net(inputs) if self.model == "GoogLeNet": x = x[0] x = F.softmax(x) return x def main(): args = parse_args() net = backbone.__dict__[args.model] model = Net(net, args.class_dim, args.model) # get QAT model quant_config = get_default_quant_config() # TODO(littletomatodonkey): add PACT for export model # quant_config["activation_preprocess_type"] = "PACT" quanter = QAT(config=quant_config) quanter.quantize(model) load_dygraph_pretrain( model.pre_net, path=args.pretrained_model, load_static_weights=args.load_static_weights) model.eval() save_path = os.path.join(args.output_path, "inference") quanter.save_quantized_model( model, save_path, input_spec=[ paddle.static.InputSpec( shape=[None, 3, args.img_size, args.img_size], dtype='float32') ]) print('inference QAT model is saved to {}'.format(save_path)) if __name__ == "__main__": main()