# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from ppcls.data.preprocess.ops.fmix import sample_mask class BatchOperator(object): """ BatchOperator """ def __init__(self, *args, **kwargs): pass def _unpack(self, batch): """ _unpack """ assert isinstance(batch, list), \ 'batch should be a list filled with tuples (img, label)' bs = len(batch) assert bs > 0, 'size of the batch data should > 0' #imgs, labels = list(zip(*batch)) imgs = [] labels = [] for item in batch: imgs.append(item[0]) labels.append(item[1]) return np.array(imgs), np.array(labels), bs def __call__(self, batch): return batch class MixupOperator(BatchOperator): """ Mixup operator """ def __init__(self, alpha=0.2): assert alpha > 0., \ 'parameter alpha[%f] should > 0.0' % (alpha) self._alpha = alpha def __call__(self, batch): imgs, labels, bs = self._unpack(batch) idx = np.random.permutation(bs) lam = np.random.beta(self._alpha, self._alpha) lams = np.array([lam] * bs, dtype=np.float32) imgs = lam * imgs + (1 - lam) * imgs[idx] return list(zip(imgs, labels, labels[idx], lams)) class CutmixOperator(BatchOperator): """ Cutmix operator """ def __init__(self, alpha=0.2): assert alpha > 0., \ 'parameter alpha[%f] should > 0.0' % (alpha) self._alpha = alpha def _rand_bbox(self, size, lam): """ _rand_bbox """ w = size[2] h = size[3] cut_rat = np.sqrt(1. - lam) cut_w = np.int(w * cut_rat) cut_h = np.int(h * cut_rat) # uniform cx = np.random.randint(w) cy = np.random.randint(h) bbx1 = np.clip(cx - cut_w // 2, 0, w) bby1 = np.clip(cy - cut_h // 2, 0, h) bbx2 = np.clip(cx + cut_w // 2, 0, w) bby2 = np.clip(cy + cut_h // 2, 0, h) return bbx1, bby1, bbx2, bby2 def __call__(self, batch): imgs, labels, bs = self._unpack(batch) idx = np.random.permutation(bs) lam = np.random.beta(self._alpha, self._alpha) bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam) imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2] lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) / (imgs.shape[-2] * imgs.shape[-1])) lams = np.array([lam] * bs, dtype=np.float32) return list(zip(imgs, labels, labels[idx], lams)) class FmixOperator(BatchOperator): """ Fmix operator """ def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False): self._alpha = alpha self._decay_power = decay_power self._max_soft = max_soft self._reformulate = reformulate def __call__(self, batch): imgs, labels, bs = self._unpack(batch) idx = np.random.permutation(bs) size = (imgs.shape[2], imgs.shape[3]) lam, mask = sample_mask(self._alpha, self._decay_power, \ size, self._max_soft, self._reformulate) imgs = mask * imgs + (1 - mask) * imgs[idx] return list(zip(imgs, labels, labels[idx], [lam] * bs))