# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function from ppcls.data import build_dataloader from ppcls.engine.train.utils import type_name from ppcls.utils import logger from .regular_train_epoch import regular_train_epoch def train_epoch_progressive(engine, epoch_id, print_batch_step): # 1. Build training hyper-parameters for different training stage num_stage = 4 ratio_list = [(i + 1) / num_stage for i in range(num_stage)] stones = [ int(engine.config["Global"]["epochs"] * ratio_list[i]) for i in range(num_stage) ] stage_id = 0 for i in range(num_stage): if epoch_id > stones[i]: stage_id = i + 1 # 2. Adjust training hyper-parameters for different training stage if not hasattr(engine, 'last_stage') or engine.last_stage < stage_id: cur_dropout_rate = 0.0 def _change_dp_func(m): global cur_dropout_rate if type_name(m) == "Head" and hasattr(m, "_dropout"): m._dropout.p = m.dropout_rate[stage_id] cur_dropout_rate = m.dropout_rate[stage_id] engine.model.apply(_change_dp_func) cur_image_size = engine.config["DataLoader"]["Train"]["dataset"][ "transform_ops"][1]["RandCropImage"]["progress_size"][stage_id] cur_magnitude = engine.config["DataLoader"]["Train"]["dataset"][ "transform_ops"][3]["RandAugmentV2"]["progress_magnitude"][ stage_id] engine.config["DataLoader"]["Train"]["dataset"]["transform_ops"][1][ "RandCropImage"]["size"] = cur_image_size engine.config["DataLoader"]["Train"]["dataset"]["transform_ops"][3][ "RandAugmentV2"]["magnitude"] = cur_magnitude engine.train_dataloader = build_dataloader( engine.config["DataLoader"], "Train", engine.device, engine.use_dali, seed=epoch_id) engine.train_dataloader_iter = iter(engine.train_dataloader) engine.last_stage = stage_id logger.info(f"Training stage: [{stage_id+1}/{num_stage}](" f"random_aug_magnitude={cur_magnitude}, " f"train_image_size={cur_image_size}, " f"dropout_rate={cur_dropout_rate}" f")") # 3. Train one epoch as usual at current stage regular_train_epoch(engine, epoch_id, print_batch_step)