# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import KaimingNormal, Constant from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D from paddle.regularizer import L2Decay from paddle import ParamAttr from ..base.theseus_layer import TheseusLayer from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "PPHGNetV2_B0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B0_ssld_pretrained.pdparams", "PPHGNetV2_B1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B1_ssld_pretrained.pdparams", "PPHGNetV2_B2": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B2_ssld_pretrained.pdparams", "PPHGNetV2_B3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B3_ssld_pretrained.pdparams", "PPHGNetV2_B4": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams", "PPHGNetV2_B5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B5_ssld_pretrained.pdparams", "PPHGNetV2_B6": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B6_ssld_pretrained.pdparams", "PPHGNetV2_B7": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B7_ssld_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) kaiming_normal_ = KaimingNormal() zeros_ = Constant(value=0.) ones_ = Constant(value=1.) class LearnableAffineBlock(TheseusLayer): """ Create a learnable affine block module. This module can significantly improve accuracy on smaller models. Args: scale_value (float): The initial value of the scale parameter, default is 1.0. bias_value (float): The initial value of the bias parameter, default is 0.0. lr_mult (float): The learning rate multiplier, default is 1.0. lab_lr (float): The learning rate, default is 0.01. """ def __init__(self, scale_value=1.0, bias_value=0.0, lr_mult=1.0, lab_lr=0.01): super().__init__() self.scale = self.create_parameter( shape=[1, ], default_initializer=Constant(value=scale_value), attr=ParamAttr(learning_rate=lr_mult * lab_lr)) self.add_parameter("scale", self.scale) self.bias = self.create_parameter( shape=[1, ], default_initializer=Constant(value=bias_value), attr=ParamAttr(learning_rate=lr_mult * lab_lr)) self.add_parameter("bias", self.bias) def forward(self, x): return self.scale * x + self.bias class ConvBNAct(TheseusLayer): """ ConvBNAct is a combination of convolution and batchnorm layers. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Size of the convolution kernel. Defaults to 3. stride (int): Stride of the convolution. Defaults to 1. padding (int/str): Padding or padding type for the convolution. Defaults to 1. groups (int): Number of groups for the convolution. Defaults to 1. use_act: (bool): Whether to use activation function. Defaults to True. use_lab (bool): Whether to use the LAB operation. Defaults to False. lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0. """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, groups=1, use_act=True, use_lab=False, lr_mult=1.0): super().__init__() self.use_act = use_act self.use_lab = use_lab self.conv = Conv2D( in_channels, out_channels, kernel_size, stride, padding=padding if isinstance(padding, str) else (kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(learning_rate=lr_mult), bias_attr=False) self.bn = BatchNorm2D( out_channels, weight_attr=ParamAttr( regularizer=L2Decay(0.0), learning_rate=lr_mult), bias_attr=ParamAttr( regularizer=L2Decay(0.0), learning_rate=lr_mult)) if self.use_act: self.act = ReLU() if self.use_lab: self.lab = LearnableAffineBlock(lr_mult=lr_mult) def forward(self, x): x = self.conv(x) x = self.bn(x) if self.use_act: x = self.act(x) if self.use_lab: x = self.lab(x) return x class LightConvBNAct(TheseusLayer): """ LightConvBNAct is a combination of pw and dw layers. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Size of the depth-wise convolution kernel. use_lab (bool): Whether to use the LAB operation. Defaults to False. lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0. """ def __init__(self, in_channels, out_channels, kernel_size, use_lab=False, lr_mult=1.0, **kwargs): super().__init__() self.conv1 = ConvBNAct( in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_act=False, use_lab=use_lab, lr_mult=lr_mult) self.conv2 = ConvBNAct( in_channels=out_channels, out_channels=out_channels, kernel_size=kernel_size, groups=out_channels, use_act=True, use_lab=use_lab, lr_mult=lr_mult) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x class StemBlock(TheseusLayer): """ StemBlock for PP-HGNetV2. Args: in_channels (int): Number of input channels. mid_channels (int): Number of middle channels. out_channels (int): Number of output channels. use_lab (bool): Whether to use the LAB operation. Defaults to False. lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0. """ def __init__(self, in_channels, mid_channels, out_channels, use_lab=False, lr_mult=1.0): super().__init__() self.stem1 = ConvBNAct( in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=2, use_lab=use_lab, lr_mult=lr_mult) self.stem2a = ConvBNAct( in_channels=mid_channels, out_channels=mid_channels // 2, kernel_size=2, stride=1, padding="SAME", use_lab=use_lab, lr_mult=lr_mult) self.stem2b = ConvBNAct( in_channels=mid_channels // 2, out_channels=mid_channels, kernel_size=2, stride=1, padding="SAME", use_lab=use_lab, lr_mult=lr_mult) self.stem3 = ConvBNAct( in_channels=mid_channels * 2, out_channels=mid_channels, kernel_size=3, stride=2, use_lab=use_lab, lr_mult=lr_mult) self.stem4 = ConvBNAct( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) self.pool = nn.MaxPool2D( kernel_size=2, stride=1, ceil_mode=True, padding="SAME") def forward(self, x): x = self.stem1(x) x2 = self.stem2a(x) x2 = self.stem2b(x2) x1 = self.pool(x) x = paddle.concat([x1, x2], 1) x = self.stem3(x) x = self.stem4(x) return x class HGV2_Block(TheseusLayer): """ HGV2_Block, the basic unit that constitutes the HGV2_Stage. Args: in_channels (int): Number of input channels. mid_channels (int): Number of middle channels. out_channels (int): Number of output channels. kernel_size (int): Size of the convolution kernel. Defaults to 3. layer_num (int): Number of layers in the HGV2 block. Defaults to 6. stride (int): Stride of the convolution. Defaults to 1. padding (int/str): Padding or padding type for the convolution. Defaults to 1. groups (int): Number of groups for the convolution. Defaults to 1. use_act (bool): Whether to use activation function. Defaults to True. use_lab (bool): Whether to use the LAB operation. Defaults to False. lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0. """ def __init__(self, in_channels, mid_channels, out_channels, kernel_size=3, layer_num=6, identity=False, light_block=True, use_lab=False, lr_mult=1.0): super().__init__() self.identity = identity self.layers = nn.LayerList() block_type = "LightConvBNAct" if light_block else "ConvBNAct" for i in range(layer_num): self.layers.append( eval(block_type)(in_channels=in_channels if i == 0 else mid_channels, out_channels=mid_channels, stride=1, kernel_size=kernel_size, use_lab=use_lab, lr_mult=lr_mult)) # feature aggregation total_channels = in_channels + layer_num * mid_channels self.aggregation_squeeze_conv = ConvBNAct( in_channels=total_channels, out_channels=out_channels // 2, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) self.aggregation_excitation_conv = ConvBNAct( in_channels=out_channels // 2, out_channels=out_channels, kernel_size=1, stride=1, use_lab=use_lab, lr_mult=lr_mult) def forward(self, x): identity = x output = [] output.append(x) for layer in self.layers: x = layer(x) output.append(x) x = paddle.concat(output, axis=1) x = self.aggregation_squeeze_conv(x) x = self.aggregation_excitation_conv(x) if self.identity: x += identity return x class HGV2_Stage(TheseusLayer): """ HGV2_Stage, the basic unit that constitutes the PPHGNetV2. Args: in_channels (int): Number of input channels. mid_channels (int): Number of middle channels. out_channels (int): Number of output channels. block_num (int): Number of blocks in the HGV2 stage. layer_num (int): Number of layers in the HGV2 block. Defaults to 6. is_downsample (bool): Whether to use downsampling operation. Defaults to False. light_block (bool): Whether to use light block. Defaults to True. kernel_size (int): Size of the convolution kernel. Defaults to 3. use_lab (bool, optional): Whether to use the LAB operation. Defaults to False. lr_mult (float, optional): Learning rate multiplier for the layer. Defaults to 1.0. """ def __init__(self, in_channels, mid_channels, out_channels, block_num, layer_num=6, is_downsample=True, light_block=True, kernel_size=3, use_lab=False, lr_mult=1.0): super().__init__() self.is_downsample = is_downsample if self.is_downsample: self.downsample = ConvBNAct( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=2, groups=in_channels, use_act=False, use_lab=use_lab, lr_mult=lr_mult) blocks_list = [] for i in range(block_num): blocks_list.append( HGV2_Block( in_channels=in_channels if i == 0 else out_channels, mid_channels=mid_channels, out_channels=out_channels, kernel_size=kernel_size, layer_num=layer_num, identity=False if i == 0 else True, light_block=light_block, use_lab=use_lab, lr_mult=lr_mult)) self.blocks = nn.Sequential(*blocks_list) def forward(self, x): if self.is_downsample: x = self.downsample(x) x = self.blocks(x) return x class PPHGNetV2(TheseusLayer): """ PPHGNetV2 Args: stage_config (dict): Config for PPHGNetV2 stages. such as the number of channels, stride, etc. stem_channels: (list): Number of channels of the stem of the PPHGNetV2. use_lab (bool): Whether to use the LAB operation. Defaults to False. use_last_conv (bool): Whether to use the last conv layer as the output channel. Defaults to True. class_expand (int): Number of channels for the last 1x1 convolutional layer. drop_prob (float): Dropout probability for the last 1x1 convolutional layer. Defaults to 0.0. class_num (int): The number of classes for the classification layer. Defaults to 1000. lr_mult_list (list): Learning rate multiplier for the stages. Defaults to [1.0, 1.0, 1.0, 1.0, 1.0]. Returns: model: nn.Layer. Specific PPHGNetV2 model depends on args. """ def __init__(self, stage_config, stem_channels=[3, 32, 64], use_lab=False, use_last_conv=True, class_expand=2048, dropout_prob=0.0, class_num=1000, lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], **kwargs): super().__init__() self.use_lab = use_lab self.use_last_conv = use_last_conv self.class_expand = class_expand self.class_num = class_num # stem self.stem = StemBlock( in_channels=stem_channels[0], mid_channels=stem_channels[1], out_channels=stem_channels[2], use_lab=use_lab, lr_mult=lr_mult_list[0]) # stages self.stages = nn.LayerList() for i, k in enumerate(stage_config): in_channels, mid_channels, out_channels, block_num, is_downsample, light_block, kernel_size, layer_num = stage_config[ k] self.stages.append( HGV2_Stage( in_channels, mid_channels, out_channels, block_num, layer_num, is_downsample, light_block, kernel_size, use_lab, lr_mult=lr_mult_list[i + 1])) self.avg_pool = AdaptiveAvgPool2D(1) if self.use_last_conv: self.last_conv = Conv2D( in_channels=out_channels, out_channels=self.class_expand, kernel_size=1, stride=1, padding=0, bias_attr=False) self.act = ReLU() if self.use_lab: self.lab = LearnableAffineBlock() self.dropout = nn.Dropout( p=dropout_prob, mode="downscale_in_infer") self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) self.fc = nn.Linear(self.class_expand if self.use_last_conv else out_channels, self.class_num) self._init_weights() def _init_weights(self): for m in self.sublayers(): if isinstance(m, nn.Conv2D): kaiming_normal_(m.weight) elif isinstance(m, (nn.BatchNorm2D)): ones_(m.weight) zeros_(m.bias) elif isinstance(m, nn.Linear): zeros_(m.bias) def forward(self, x): x = self.stem(x) for stage in self.stages: x = stage(x) x = self.avg_pool(x) if self.use_last_conv: x = self.last_conv(x) x = self.act(x) if self.use_lab: x = self.lab(x) x = self.dropout(x) x = self.flatten(x) x = self.fc(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def PPHGNetV2_B0(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B0 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B0` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [16, 16, 64, 1, False, False, 3, 3], "stage2": [64, 32, 256, 1, True, False, 3, 3], "stage3": [256, 64, 512, 2, True, True, 5, 3], "stage4": [512, 128, 1024, 1, True, True, 5, 3], } model = PPHGNetV2( stem_channels=[3, 16, 16], stage_config=stage_config, use_lab=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B0"], use_ssld) return model def PPHGNetV2_B1(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B1 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B1` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 64, 1, False, False, 3, 3], "stage2": [64, 48, 256, 1, True, False, 3, 3], "stage3": [256, 96, 512, 2, True, True, 5, 3], "stage4": [512, 192, 1024, 1, True, True, 5, 3], } model = PPHGNetV2( stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B1"], use_ssld) return model def PPHGNetV2_B2(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B2 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B2` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 96, 1, False, False, 3, 4], "stage2": [96, 64, 384, 1, True, False, 3, 4], "stage3": [384, 128, 768, 3, True, True, 5, 4], "stage4": [768, 256, 1536, 1, True, True, 5, 4], } model = PPHGNetV2( stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B2"], use_ssld) return model def PPHGNetV2_B3(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B3 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B3` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 128, 1, False, False, 3, 5], "stage2": [128, 64, 512, 1, True, False, 3, 5], "stage3": [512, 128, 1024, 3, True, True, 5, 5], "stage4": [1024, 256, 2048, 1, True, True, 5, 5], } model = PPHGNetV2( stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B3"], use_ssld) return model def PPHGNetV2_B4(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B4 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B4` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [48, 48, 128, 1, False, False, 3, 6], "stage2": [128, 96, 512, 1, True, False, 3, 6], "stage3": [512, 192, 1024, 3, True, True, 5, 6], "stage4": [1024, 384, 2048, 1, True, True, 5, 6], } model = PPHGNetV2( stem_channels=[3, 32, 48], stage_config=stage_config, use_lab=False, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B4"], use_ssld) return model def PPHGNetV2_B5(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B5 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B5` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [64, 64, 128, 1, False, False, 3, 6], "stage2": [128, 128, 512, 2, True, False, 3, 6], "stage3": [512, 256, 1024, 5, True, True, 5, 6], "stage4": [1024, 512, 2048, 2, True, True, 5, 6], } model = PPHGNetV2( stem_channels=[3, 32, 64], stage_config=stage_config, use_lab=False, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B5"], use_ssld) return model def PPHGNetV2_B6(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B6 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B6` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [96, 96, 192, 2, False, False, 3, 6], "stage2": [192, 192, 512, 3, True, False, 3, 6], "stage3": [512, 384, 1024, 6, True, True, 5, 6], "stage4": [1024, 768, 2048, 3, True, True, 5, 6], } model = PPHGNetV2( stem_channels=[3, 48, 96], stage_config=stage_config, use_lab=False, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B6"], use_ssld) return model def PPHGNetV2_B7(pretrained=False, use_ssld=False, **kwargs): """ PPHGNetV2_B7 Args: pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld (bool) Whether using ssld pretrained model when pretrained is True. Returns: model: nn.Layer. Specific `PPHGNetV2_B7` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num "stage1": [128, 128, 256, 2, False, False, 3, 7], "stage2": [256, 256, 512, 4, True, False, 3, 7], "stage3": [512, 512, 1024, 12, True, True, 5, 7], "stage4": [1024, 1024, 2048, 4, True, True, 5, 7], } model = PPHGNetV2( stem_channels=[3, 64, 128], stage_config=stage_config, use_lab=False, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPHGNetV2_B7"], use_ssld) return model