# global configs Global: checkpoints: null pretrained_model: null # pretrained_model: "./pd_model_trace/ISE/ISE_M_model" # pretrained ISE model for Market1501 # pretrained_model: "./pd_model_trace/ISE/ISE_MS_model" # pretrained ISE model for MSMT17 output_dir: "./output/" device: "gpu" save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 120 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 128, 256] save_inference_dir: "./inference" eval_mode: "retrieval" # model architecture Arch: name: "RecModel" infer_output_key: "features" infer_add_softmax: False Backbone: name: "ResNet50_last_stage_stride1" pretrained: True BackboneStopLayer: name: "avg_pool" Neck: name: "BNNeck" num_features: 2048 Head: name: "FC" embedding_size: 2048 class_num: 751 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 - SupConLoss: weight: 1.0 views: 2 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.04 regularizer: name: 'L2' coeff: 0.0005 # data loader for train and eval DataLoader: Train: dataset: name: "Market1501" # ["Market1501", "MSMT17"] image_root: "./dataset" cls_label_path: "bounding_box_train" transform_ops: - ResizeImage: size: [128, 256] interpolation: 'bicubic' backend: 'pil' - RandFlipImage: flip_code: 1 - Pad: padding: 10 fill: 0 - RandomCrop: size: [128, 256] pad_if_needed: False - NormalizeImage: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - RandomErasing: EPSILON: 0.5 sl: 0.02 sh: 0.4 r1: 0.3 mean: [0.485, 0.456, 0.406] sampler: name: PKSampler batch_size: 16 sample_per_id: 4 drop_last: True shuffle: True loader: num_workers: 6 use_shared_memory: True Eval: Query: dataset: name: "Market1501" # ["Market1501", "MSMT17"] image_root: "./dataset" cls_label_path: "query" transform_ops: - ResizeImage: size: [128, 256] interpolation: 'bicubic' backend: 'pil' - NormalizeImage: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: False loader: num_workers: 6 use_shared_memory: True Gallery: dataset: name: "Market1501" # ["Market1501", "MSMT17"] image_root: "./dataset" cls_label_path: "bounding_box_test" transform_ops: - ResizeImage: size: [128, 256] interpolation: 'bicubic' backend: 'pil' - NormalizeImage: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: False loader: num_workers: 6 use_shared_memory: True Metric: Eval: - Recallk: topk: [1, 5] - mAP: {}