Global: checkpoints: null pretrained_model: null output_dir: ./output device: gpu save_interval: -1 eval_during_train: true eval_interval: 1 epochs: 1024 iter_per_epoch: 1024 print_batch_step: 20 use_visualdl: false use_dali: false train_mode: fixmatch_ccssl image_shape: [3, 32, 32] save_inference_dir: ./inference SSL: T: 1 threshold: 0.95 EMA: decay: 0.999 Arch: name: RecModel infer_output_key: logits infer_add_softmax: false head_feature_from: backbone Backbone: name: WideResNet widen_factor: 8 depth: 28 dropout: 0 num_classes: 100 low_dim: 64 proj: false proj_after: false BackboneStopLayer: name: bn1 Neck: name: FRFNNeck num_features: 512 low_dim: 64 Head: name: FC embedding_size: 512 class_num: 100 use_sync_bn: true Loss: Train: - CELoss: weight: 1.0 reduction: "mean" Eval: - CELoss: weight: 1.0 UnLabelLoss: Train: - CCSSLCELoss: weight: 1. - SoftSupConLoss: weight: 1.0 temperature: 0.07 Optimizer: name: Momentum momentum: 0.9 use_nesterov: true weight_decay: 0.001 lr: name: 'CosineFixmatch' learning_rate: 0.03 num_warmup_steps: 0 DataLoader: mean: [0.5071, 0.4867, 0.4408] std: [0.2675, 0.2565, 0.2761] Train: dataset: name: Cifar100 data_file: null mode: 'train' download: true backend: 'pil' sample_per_label: 100 expand_labels: 1 transform_ops: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - NormalizeImage: scale: 1.0/255.0 mean: [0.5071, 0.4867, 0.4408] std: [0.2675, 0.2565, 0.2761] order: hwc sampler: name: DistributedBatchSampler batch_size: 16 drop_last: true shuffle: true loader: num_workers: 4 use_shared_memory: true UnLabelTrain: dataset: name: Cifar100 data_file: null mode: 'train' backend: 'pil' download: true transform_ops_weak: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - NormalizeImage: scale: 1.0/255.0 mean: [0.5071, 0.4867, 0.4408] std: [0.2675, 0.2565, 0.2761] order: hwc transform_ops_strong: - RandFlipImage: flip_code: 1 - Pad_paddle_vision: padding: 4 padding_mode: reflect - RandCropImageV2: size: [32, 32] - RandAugment: num_layers: 2 magnitude: 10 - NormalizeImage: scale: 1.0/255.0 mean: [0.5071, 0.4867, 0.4408] std: [0.2675, 0.2565, 0.2761] order: hwc transform_ops_strong2: - RandomResizedCrop: size: [32, 32] - RandFlipImage: flip_code: 1 - RandomApply: transforms: - RawColorJitter: brightness: 0.4 contrast: 0.4 saturation: 0.4 hue: 0.1 p: 0.8 - RandomGrayscale: p: 0.2 - NormalizeImage: scale: 1.0/255.0 mean: [0., 0., 0.] std: [1., 1., 1.] order: hwc sampler: name: DistributedBatchSampler batch_size: 112 drop_last: true shuffle: true loader: num_workers: 4 use_shared_memory: true Eval: dataset: name: Cifar100 mode: 'test' backend: 'pil' download: true data_file: null transform_ops: - NormalizeImage: scale: 1.0/255.0 mean: [0.5071, 0.4867, 0.4408] std: [0.2675, 0.2565, 0.2761] order: hwc sampler: name: DistributedBatchSampler batch_size: 16 drop_last: False shuffle: True loader: num_workers: 4 use_shared_memory: true Metric: Eval: - TopkAcc: topk: [1, 5]