import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleClas model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--topk", type=int, default=1, help="Return topk results.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu' or 'ipu' or 'kunlunxin' or 'ascend' ." ) parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") parser.add_argument( "--backend", type=str, default="default", help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu" ) return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu(args.device_id) if args.backend.lower() == "trt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." option.use_trt_backend() elif args.backend.lower() == "pptrt": assert args.device.lower( ) == "gpu", "Paddle-TensorRT backend require inference on device GPU." option.use_paddle_infer_backend() option.paddle_infer_option.enable_trt = True elif args.backend.lower() == "ort": option.use_ort_backend() elif args.backend.lower() == "paddle": option.use_paddle_infer_backend() elif args.backend.lower() == "openvino": assert args.device.lower( ) == "cpu", "OpenVINO backend require inference on device CPU." option.use_openvino_backend() elif args.backend.lower() == "pplite": assert args.device.lower( ) == "cpu", "Paddle Lite backend require inference on device CPU." option.use_lite_backend() return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model_file = os.path.join(args.model, "inference.pdmodel") params_file = os.path.join(args.model, "inference.pdiparams") config_file = os.path.join(args.model, "inference_cls.yaml") model = fd.vision.classification.PaddleClasModel( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片分类结果 im = cv2.imread(args.image) result = model.predict(im, args.topk) print(result)