import logging import numpy as np import time from typing import Optional import cv2 import json from tritonclient import utils as client_utils from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2 LOGGER = logging.getLogger("run_inference_on_triton") class SyncGRPCTritonRunner: DEFAULT_MAX_RESP_WAIT_S = 120 def __init__( self, server_url: str, model_name: str, model_version: str, *, verbose=False, resp_wait_s: Optional[float]=None, ): self._server_url = server_url self._model_name = model_name self._model_version = model_version self._verbose = verbose self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s self._client = InferenceServerClient( self._server_url, verbose=self._verbose) error = self._verify_triton_state(self._client) if error: raise RuntimeError( f"Could not communicate to Triton Server: {error}") LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!") model_config = self._client.get_model_config(self._model_name, self._model_version) model_metadata = self._client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {model_config}") LOGGER.info(f"Model metadata {model_metadata}") for tm in model_metadata.inputs: print("tm:", tm) self._inputs = {tm.name: tm for tm in model_metadata.inputs} self._input_names = list(self._inputs) self._outputs = {tm.name: tm for tm in model_metadata.outputs} self._output_names = list(self._outputs) self._outputs_req = [ InferRequestedOutput(name) for name in self._outputs ] def Run(self, inputs): """ Args: inputs: list, Each value corresponds to an input name of self._input_names Returns: results: dict, {name : numpy.array} """ infer_inputs = [] for idx, data in enumerate(inputs): infer_input = InferInput(self._input_names[idx], data.shape, "UINT8") infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) results = self._client.infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=self._outputs_req, client_timeout=self._response_wait_t, ) results = {name: results.as_numpy(name) for name in self._output_names} return results def _verify_triton_state(self, triton_client): if not triton_client.is_server_live(): return f"Triton server {self._server_url} is not live" elif not triton_client.is_server_ready(): return f"Triton server {self._server_url} is not ready" elif not triton_client.is_model_ready(self._model_name, self._model_version): return f"Model {self._model_name}:{self._model_version} is not ready" return None if __name__ == "__main__": model_name = "paddlecls" model_version = "1" url = "localhost:8001" runner = SyncGRPCTritonRunner(url, model_name, model_version) im = cv2.imread("ILSVRC2012_val_00000010.jpeg") im = np.array([im, ]) # batch input # im = np.array([im, im, im]) for i in range(1): result = runner.Run([im, ]) for name, values in result.items(): print("output_name:", name) # values is batch for value in values: value = json.loads(value) print(value)