// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace cv; using namespace PaddleClas; DEFINE_string(config, "", "Path of yaml file"); DEFINE_string(c, "", "Path of yaml file"); int main(int argc, char **argv) { google::ParseCommandLineFlags(&argc, &argv, true); std::string yaml_path = ""; if (FLAGS_config == "" && FLAGS_c == "") { std::cerr << "[ERROR] usage: " << std::endl << argv[0] << " -c $yaml_path" << std::endl << "or:" << std::endl << argv[0] << " -config $yaml_path" << std::endl; exit(1); } else if (FLAGS_config != "") { yaml_path = FLAGS_config; } else { yaml_path = FLAGS_c; } ClsConfig config(yaml_path); config.PrintConfigInfo(); std::string path(config.infer_imgs); std::vector img_files_list; if (cv::utils::fs::isDirectory(path)) { std::vector filenames; cv::glob(path, filenames); for (auto f : filenames) { img_files_list.push_back(f); } } else { img_files_list.push_back(path); } std::cout << "img_file_list length: " << img_files_list.size() << std::endl; Classifier classifier(config); std::vector cls_times = {0, 0, 0}; std::vector cls_times_total = {0, 0, 0}; double infer_time; std::vector out_data; std::vector result_index; int warmup_iter = 5; bool label_output_equal_flag = true; for (int idx = 0; idx < img_files_list.size(); ++idx) { std::string img_path = img_files_list[idx]; cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR); if (!srcimg.data) { std::cerr << "[ERROR] image read failed! image path: " << img_path << "\n"; exit(-1); } cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB); classifier.Run(srcimg, out_data, result_index, cls_times); if (label_output_equal_flag and out_data.size() != config.id_map.size()) { std::cout << "Warning: the label size is not equal to output size!" << std::endl; label_output_equal_flag = false; } int max_len = std::min(config.topk, int(out_data.size())); std::cout << "Current image path: " << img_path << std::endl; infer_time = cls_times[0] + cls_times[1] + cls_times[2]; std::cout << "Current total inferen time cost: " << infer_time << " ms." << std::endl; for (int i = 0; i < max_len; ++i) { printf("\tTop%d: class_id: %d, score: %.4f, ", i + 1, result_index[i], out_data[result_index[i]]); if (label_output_equal_flag) printf("label: %s\n", config.id_map[result_index[i]].c_str()); } if (idx >= warmup_iter) { for (int i = 0; i < cls_times.size(); ++i) cls_times_total[i] += cls_times[i]; } } if (img_files_list.size() > warmup_iter) { infer_time = cls_times_total[0] + cls_times_total[1] + cls_times_total[2]; std::cout << "average time cost in all: " << infer_time / (img_files_list.size() - warmup_iter) << " ms." << std::endl; } std::string presion = "fp32"; if (config.use_fp16) presion = "fp16"; if (config.benchmark) { AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt, config.use_mkldnn, config.cpu_threads, 1, "1, 3, 224, 224", presion, cls_times_total, img_files_list.size()); autolog.report(); } return 0; }