# ViT 与 DeiT 系列
---
## 目录
* [1. 概述](#1)
* [2. 精度、FLOPS 和参数量](#2)
* [3. 基于V100 GPU 的预测速度](#3)
## 1. 概述
ViT(Vision Transformer)系列模型是 Google 在 2020 年提出的,该模型仅使用标准的 Transformer 结构,完全抛弃了卷积结构,将图像拆分为多个 patch 后再输入到 Transformer 中,展示了 Transformer 在 CV 领域的潜力。[论文地址](https://arxiv.org/abs/2010.11929)。
DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020 年底提出的,针对 ViT 模型需要大规模数据集训练的问题进行了改进,最终在 ImageNet 上取得了 83.1%的 Top1 精度。并且使用卷积模型作为教师模型,针对该模型进行知识蒸馏,在 ImageNet 数据集上可以达到 85.2% 的 Top1 精度。[论文地址](https://arxiv.org/abs/2012.12877)。
## 2. 精度、FLOPS 和参数量
| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Params
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ViT_small_patch16_224 | 0.7769 | 0.9342 | 0.7785 | 0.9342 | 9.41 | 48.60 |
| ViT_base_patch16_224 | 0.8195 | 0.9617 | 0.8178 | 0.9613 | 16.85 | 86.42 |
| ViT_base_patch16_384 | 0.8414 | 0.9717 | 0.8420 | 0.9722 | 49.35 | 86.42 |
| ViT_base_patch32_384 | 0.8176 | 0.9613 | 0.8166 | 0.9613 | 12.66 | 88.19 |
| ViT_large_patch16_224 | 0.8323 | 0.9650 | 0.8306 | 0.9644 | 59.65 | 304.12 |
| ViT_large_patch16_384 | 0.8513 | 0.9736 | 0.8517 | 0.9736 | 174.70 | 304.12 |
| ViT_large_patch32_384 | 0.8153 | 0.9608 | 0.815 | - | 44.24 | 306.48 |
| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Params
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | 1.07 | 5.68 |
| DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | 4.24 | 21.97 |
| DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | 16.85 | 86.42 |
| DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | 49.35 | 86.42 |
| DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | 1.08 | 5.87 |
| DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | 4.26 | 22.36 |
| DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | 16.93 | 87.18 |
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | 49.43 | 87.18 |
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) |
| -------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| ViT_small_
patch16_224 | 256 | 224 | 3.71 | 9.05 | 16.72 |
| ViT_base_
patch16_224 | 256 | 224 | 6.12 | 14.84 | 28.51 |
| ViT_base_
patch16_384 | 384 | 384 | 14.15 | 48.38 | 95.06 |
| ViT_base_
patch32_384 | 384 | 384 | 4.94 | 13.43 | 24.08 |
| ViT_large_
patch16_224 | 256 | 224 | 15.53 | 49.50 | 94.09 |
| ViT_large_
patch16_384 | 384 | 384 | 39.51 | 152.46 | 304.06 |
| ViT_large_
patch32_384 | 384 | 384 | 11.44 | 36.09 | 70.63 |
| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) |
| ------------------------------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| DeiT_tiny_
patch16_224 | 256 | 224 | 3.61 | 3.94 | 6.10 |
| DeiT_small_
patch16_224 | 256 | 224 | 3.61 | 6.24 | 10.49 |
| DeiT_base_
patch16_224 | 256 | 224 | 6.13 | 14.87 | 28.50 |
| DeiT_base_
patch16_384 | 384 | 384 | 14.12 | 48.80 | 97.60 |
| DeiT_tiny_
distilled_patch16_224 | 256 | 224 | 3.51 | 4.05 | 6.03 |
| DeiT_small_
distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 |
| DeiT_base_
distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 |
| DeiT_base_
distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 |