from __future__ import absolute_import, division, print_function import time from turtle import update import paddle from ppcls.engine.train.train_fixmatch import get_loss from ppcls.engine.train.utils import update_loss, update_metric, log_info from ppcls.utils import profiler from paddle.nn import functional as F import numpy as np # from reprod_log import ReprodLogger def train_epoch_fixmatch_ccssl(engine, epoch_id, print_batch_step): ############################################################## # out_logger = ReprodLogger() # loss_logger = ReprodLogger() # epoch = 0 ############################################################## tic = time.time() if not hasattr(engine, 'train_dataloader_iter'): engine.train_dataloader_iter = iter(engine.train_dataloader) engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader) temperture = engine.config['SSL'].get("T", 1) threshold = engine.config['SSL'].get("threshold", 0.95) assert engine.iter_per_epoch is not None, "Global.iter_per_epoch need to be set" threshold = paddle.to_tensor(threshold) # dataload_logger = ReprodLogger() for iter_id in range(engine.iter_per_epoch): if iter_id >= engine.iter_per_epoch: break if iter_id == 5: for key in engine.time_info: engine.time_info[key].reset() try: label_data_batch = engine.train_dataloader_iter.next() except Exception: engine.train_dataloader_iter = iter(engine.train_dataloader) label_data_batch = engine.train_dataloader_iter.next() try: unlabel_data_batch = engine.unlabel_train_dataloader_iter.next() except Exception: engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader) unlabel_data_batch = engine.unlabel_train_dataloader_iter.next() assert len(unlabel_data_batch) == 3 assert unlabel_data_batch[0].shape == unlabel_data_batch[1].shape == unlabel_data_batch[2].shape ############################################################## # inputs_x, target_x = label_data_batch # inputs_w, inputs_s1, inputs_s2 = unlabel_data_batch # dataload_logger.add(f"inputs_x_iter_{iter_id}", inputs_x.detach().numpy()) # dataload_logger.add(f"target_x_iter_{iter_id}", target_x.detach().numpy()) # dataload_logger.add(f"inputs_w_iter_{iter_id}", inputs_w.detach().numpy()) # dataload_logger.add(f"inputs_s1_iter_{iter_id}", inputs_s1.detach().numpy()) # dataload_logger.add(f"inputs_s2_iter_{iter_id}", inputs_s2.detach().numpy()) # dataload_logger.save('../align/step2/data/paddle.npy') # assert 1==0 ############################################################## engine.time_info['reader_cost'].update(time.time() - tic) batch_size = label_data_batch[0].shape[0] \ + unlabel_data_batch[0].shape[0] \ + unlabel_data_batch[1].shape[0] \ + unlabel_data_batch[2].shape[0] engine.global_step += 1 # make inputs inputs_x, targets_x = label_data_batch # inputs_x = inputs_x[0] inputs_w, inputs_s1, inputs_s2 = unlabel_data_batch batch_size_label = inputs_x.shape[0] inputs = paddle.concat([inputs_x, inputs_w, inputs_s1, inputs_s2]) loss_dict, logits_label = get_loss(engine, inputs, batch_size_label, temperture, threshold, targets_x, # epoch=epoch, # batch_idx=iter_id, # out_logger=out_logger, # loss_logger=loss_logger ) loss = loss_dict['loss'] loss.backward() for i in range(len(engine.optimizer)): engine.optimizer[i].step() for i in range(len(engine.lr_sch)): if not getattr(engine.lr_sch[i], 'by_epoch', False): engine.lr_sch[i].step() for i in range(len(engine.optimizer)): engine.optimizer[i].clear_grad() if engine.ema: engine.model_ema.update(engine.model) update_metric(engine, logits_label, label_data_batch, batch_size) update_loss(engine, loss_dict, batch_size) engine.time_info['batch_cost'].update(time.time() - tic) if iter_id % print_batch_step == 0: log_info(engine, batch_size, epoch_id, iter_id) tic = time.time() # if iter_id == 10: # assert 1==0 for i in range(len(engine.lr_sch)): if getattr(engine.lr_sch[i], 'by_epoch', False): engine.lr_sch[i].step() def get_loss(engine, inputs, batch_size_label, temperture, threshold, targets_x, **kwargs ): logits, feats = engine.model(inputs) feat_w, feat_s1, feat_s2 = feats[batch_size_label:].chunk(3) feat_x = feats[:batch_size_label] logits_x = logits[:batch_size_label] logits_w, logits_s1, logits_s2 = logits[batch_size_label:].chunk(3) loss_dict_label = engine.train_loss_func(logits_x, targets_x) probs_u_w = F.softmax(logits_w.detach() / temperture, axis=-1) max_probs, p_targets_u_w = probs_u_w.max(axis=-1), probs_u_w.argmax(axis=-1) mask = paddle.greater_equal(max_probs, threshold).astype('float') # feats = paddle.concat([logits_s1.unsqueeze(1), logits_s2.unsqueeze(1)], axis=1) feats = paddle.concat([feat_s1.unsqueeze(1), feat_s2.unsqueeze(1)], axis=1) batch = {'logits_w': logits_w, 'logits_s1': logits_s1, 'p_targets_u_w': p_targets_u_w, 'mask': mask, 'max_probs': max_probs, } unlabel_loss = engine.unlabel_train_loss_func(feats, batch) loss_dict = {} for k, v in loss_dict_label.items(): if k != 'loss': loss_dict[k] = v for k, v in unlabel_loss.items(): if k != 'loss': loss_dict[k] = v loss_dict['loss'] = loss_dict_label['loss'] + unlabel_loss['loss'] ############################################################## # print(loss_dict) # epoch = kwargs['epoch'] # batch_idx = kwargs['batch_idx'] # out_logger = kwargs['out_logger'] # loss_logger = kwargs['loss_logger'] # out_logger.add(f'logit_x_{epoch}_{batch_idx}', logits_x.detach().numpy()) # out_logger.add(f'logit_u_w_{epoch}_{batch_idx}', logits_w.detach().numpy()) # out_logger.add(f'logit_u_s1_{epoch}_{batch_idx}', logits_s1.detach().numpy()) # out_logger.add(f'logit_u_s2_{epoch}_{batch_idx}', logits_s2.detach().numpy()) # out_logger.add(f'feat_x_{epoch}_{batch_idx}', feat_x.detach().numpy()) # out_logger.add(f'feat_w_{epoch}_{batch_idx}', feat_w.detach().numpy()) # out_logger.add(f'feat_s1_{epoch}_{batch_idx}', feat_s1.detach().numpy()) # out_logger.add(f'feat_s2_{epoch}_{batch_idx}', feat_s2.detach().numpy()) # loss_logger.add(f'loss_{epoch}_{batch_idx}', loss_dict['loss'].detach().numpy()) # loss_logger.add(f'loss_x_{epoch}_{batch_idx}', loss_dict['CELoss'].detach().cpu().numpy()) # loss_logger.add(f'loss_u_{epoch}_{batch_idx}', loss_dict['CCSSLCeLoss'].detach().cpu().numpy()) # loss_logger.add(f'loss_c_{epoch}_{batch_idx}', loss_dict['SoftSupConLoss'].detach().cpu().numpy()) # loss_logger.add(f'mask_prob_{epoch}_{batch_idx}', mask.mean().detach().numpy()) # out_logger.save('../align/step3/data/paddle_out.npy') # loss_logger.save('../align/step3/data/paddle_loss.npy') ############################################################## # assert 1==0 return loss_dict, logits_x