# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F class WSLLoss(nn.Layer): """ Weighted Soft Labels Loss paper: https://arxiv.org/pdf/2102.00650.pdf code reference: https://github.com/bellymonster/Weighted-Soft-Label-Distillation """ def __init__(self, temperature=2.0, use_target_as_gt=False): super().__init__() self.temperature = temperature self.use_target_as_gt = use_target_as_gt def forward(self, logits_student, logits_teacher, target=None): """Compute weighted soft labels loss. Args: logits_student: student's logits with shape (batch_size, num_classes) logits_teacher: teacher's logits with shape (batch_size, num_classes) target: ground truth labels with shape (batch_size) """ if target is None or self.use_target_as_gt: target = logits_teacher.argmax(axis=-1) target = F.one_hot( target.reshape([-1]), num_classes=logits_student[0].shape[0]) s_input_for_softmax = logits_student / self.temperature t_input_for_softmax = logits_teacher / self.temperature ce_loss_s = -paddle.sum(target * F.log_softmax(logits_student.detach()), axis=1) ce_loss_t = -paddle.sum(target * F.log_softmax(logits_teacher.detach()), axis=1) ratio = ce_loss_s / (ce_loss_t + 1e-7) ratio = paddle.maximum(ratio, paddle.zeros_like(ratio)) kd_loss = -paddle.sum(F.softmax(t_input_for_softmax) * F.log_softmax(s_input_for_softmax), axis=1) weight = 1 - paddle.exp(-ratio) weighted_kd_loss = (self.temperature**2) * paddle.mean(kd_loss * weight) return weighted_kd_loss