# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(__file__) sys.path.append(os.path.join(__dir__, '')) import argparse import shutil import textwrap from difflib import SequenceMatcher from prettytable import PrettyTable import cv2 import numpy as np import tarfile import requests from tqdm import tqdm from tools.infer.utils import get_image_list, preprocess, save_prelabel_results from tools.infer.predict import Predictor __all__ = ['PaddleClas'] BASE_DIR = os.path.expanduser("~/.paddleclas/") BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, 'inference_model') BASE_IMAGES_DIR = os.path.join(BASE_DIR, 'images') model_series = { "AlexNet": ["AlexNet"], "DarkNet": ["DarkNet53"], "DeiT": [ 'DeiT_base_distilled_patch16_224', 'DeiT_base_distilled_patch16_384', 'DeiT_base_patch16_224', 'DeiT_base_patch16_384', 'DeiT_small_distilled_patch16_224', 'DeiT_small_patch16_224', 'DeiT_tiny_distilled_patch16_224', 'DeiT_tiny_patch16_224' ], "DenseNet": [ "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264" ], "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"], "EfficientNet": [ "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1", "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5", "EfficientNetB6", "EfficientNetB7" ], "GhostNet": ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"], "HRNet": [ "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C", "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld", "HRNet_W48_C_ssld" ], "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"], "MobileNetV1": [ "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1", "MobileNetV1_ssld" ], "MobileNetV2": [ "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75", "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0", "MobileNetV2_ssld" ], "MobileNetV3": [ "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5", "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0", "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35", "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75", "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25", "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld" ], "RegNet": ["RegNetX_4GF"], "Res2Net": [ "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s", "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s", "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld", "Res2Net200_vd_26w_4s_ssld" ], "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"], "ResNet": [ "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50", "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101", "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd", "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2", "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy" ], "ResNeXt": [ "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d", "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d", "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl", "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl", "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d", "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d", "ResNeXt152_vd_64x4d" ], "SENet": [ "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd", "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d", "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d" ], "ShuffleNetV2": [ "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0" ], "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"], "SwinTransformer": [ "SwinTransformer_large_patch4_window7_224_22kto1k", "SwinTransformer_large_patch4_window12_384_22kto1k", "SwinTransformer_base_patch4_window7_224_22kto1k", "SwinTransformer_base_patch4_window12_384_22kto1k", "SwinTransformer_base_patch4_window12_384", "SwinTransformer_base_patch4_window7_224", "SwinTransformer_small_patch4_window7_224", "SwinTransformer_tiny_patch4_window7_224" ], "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"], "VisionTransformer": [ "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224", "ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_small_patch16_224" ], "Xception": [ "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab", "Xception71" ] } class ModelNameError(Exception): """ ModelNameError """ def __init__(self, message=''): super().__init__(message) def print_info(): table = PrettyTable(['Series', 'Name']) for series in model_series: names = textwrap.fill(" ".join(model_series[series]), width=100) table.add_row([series, names]) print('Inference models that Paddle provides are listed as follows:') print(table) def get_model_names(): model_names = [] for series in model_series: model_names += model_series[series] return model_names def similar_architectures(name='', names=[], thresh=0.1, topk=10): """ inferred similar architectures """ scores = [] for idx, n in enumerate(names): if n.startswith('__'): continue score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() if score > thresh: scores.append((idx, score)) scores.sort(key=lambda x: x[1], reverse=True) similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] return similar_names def download_with_progressbar(url, save_path): response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get('content-length', 0)) block_size = 1024 # 1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open(save_path, 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes: raise Exception( "Something went wrong while downloading model/image from {}". format(url)) def maybe_download(model_storage_directory, url): # using custom model tar_file_name_list = [ 'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel' ] if not os.path.exists( os.path.join(model_storage_directory, 'inference.pdiparams') ) or not os.path.exists( os.path.join(model_storage_directory, 'inference.pdmodel')): tmp_path = os.path.join(model_storage_directory, url.split('/')[-1]) print('download {} to {}'.format(url, tmp_path)) os.makedirs(model_storage_directory, exist_ok=True) download_with_progressbar(url, tmp_path) with tarfile.open(tmp_path, 'r') as tarObj: for member in tarObj.getmembers(): filename = None for tar_file_name in tar_file_name_list: if tar_file_name in member.name: filename = tar_file_name if filename is None: continue file = tarObj.extractfile(member) with open( os.path.join(model_storage_directory, filename), 'wb') as f: f.write(file.read()) os.remove(tmp_path) def load_label_name_dict(path): if not os.path.exists(path): print( "Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!" ) return None else: result = {} for line in open(path, 'r'): partition = line.split('\n')[0].partition(' ') try: result[int(partition[0])] = str(partition[-1]) except: result = {} break return result def parse_args(mMain=True, add_help=True): def str2bool(v): return v.lower() in ("true", "t", "1") if mMain == True: # general params parser = argparse.ArgumentParser(add_help=add_help) parser.add_argument("--model_name", type=str) parser.add_argument("-i", "--image_file", type=str) parser.add_argument("--use_gpu", type=str2bool, default=False) # params for preprocess parser.add_argument("--resize_short", type=int, default=256) parser.add_argument("--resize", type=int, default=224) parser.add_argument("--normalize", type=str2bool, default=True) parser.add_argument("-b", "--batch_size", type=int, default=1) # params for predict parser.add_argument( "--model_file", type=str, default='') ## inference.pdmodel parser.add_argument( "--params_file", type=str, default='') ## inference.pdiparams parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=8000) parser.add_argument("--enable_profile", type=str2bool, default=False) parser.add_argument("--top_k", type=int, default=1) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--cpu_num_threads", type=int, default=10) # parameters for pre-label the images parser.add_argument("--label_name_path", type=str, default='') parser.add_argument( "--pre_label_image", type=str2bool, default=False, help="Whether to pre-label the images using the loaded weights") parser.add_argument("--pre_label_out_idr", type=str, default=None) return parser.parse_args() else: return argparse.Namespace( model_name='', image_file='', use_gpu=False, use_fp16=False, use_tensorrt=False, is_preprocessed=False, resize_short=256, resize=224, normalize=True, batch_size=1, model_file='', params_file='', ir_optim=True, gpu_mem=8000, enable_profile=False, top_k=1, enable_mkldnn=False, cpu_num_threads=10, label_name_path='', pre_label_image=False, pre_label_out_idr=None) class PaddleClas(object): print_info() def __init__(self, **kwargs): model_names = get_model_names() process_params = parse_args(mMain=False, add_help=False) process_params.__dict__.update(**kwargs) if not os.path.exists(process_params.model_file): if process_params.model_name is None: raise ModelNameError( 'Please input model name that you want to use!') similar_names = similar_architectures(process_params.model_name, model_names) model_list = ', '.join(similar_names) if process_params.model_name not in similar_names: err = "{} is not exist! Maybe you want: [{}]" \ "".format(process_params.model_name, model_list) raise ModelNameError(err) if process_params.model_name in model_names: url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar'.format( process_params.model_name) if not os.path.exists( os.path.join(BASE_INFERENCE_MODEL_DIR, process_params.model_name)): os.makedirs( os.path.join(BASE_INFERENCE_MODEL_DIR, process_params.model_name)) download_path = os.path.join(BASE_INFERENCE_MODEL_DIR, process_params.model_name) maybe_download(model_storage_directory=download_path, url=url) process_params.model_file = os.path.join(download_path, 'inference.pdmodel') process_params.params_file = os.path.join( download_path, 'inference.pdiparams') process_params.label_name_path = os.path.join( __dir__, 'ppcls/utils/imagenet1k_label_list.txt') else: raise Exception( 'The model inputed is {}, not provided by PaddleClas. If you want to use your own model, please input model_file as model path!'. format(process_params.model_name)) else: print('Using user-specified model and params!') print("process params are as follows: \n{}".format(process_params)) self.label_name_dict = load_label_name_dict( process_params.label_name_path) self.args = process_params self.predictor = Predictor(process_params) def postprocess(self, output): output = output.flatten() classes = np.argpartition(output, -self.args.top_k)[-self.args.top_k:] class_ids = classes[np.argsort(-output[classes])] scores = output[class_ids] label_names = [self.label_name_dict[c] for c in class_ids] if self.label_name_dict else [] return { "class_ids": class_ids, "scores": scores, "label_names": label_names } def predict(self, input_data): """ predict label of img with paddleclas Args: input_data(string, NumPy.ndarray): image to be classified, support: string: local path of image file, internet URL, directory containing series of images; NumPy.ndarray: preprocessed image data that has 3 channels and accords with [C, H, W], or raw image data that has 3 channels and accords with [H, W, C] Returns: dict: {image_name: "", class_id: [], scores: [], label_names: []},if label name path == None,label_names will be empty. """ if isinstance(input_data, np.ndarray): if not self.args.is_preprocessed: input_data = input_data[:, :, ::-1] input_data = preprocess(input_data, self.args) input_data = np.expand_dims(input_data, axis=0) batch_outputs = self.predictor.predict(input_data) result = {"filename": "image"} result.update(self.postprocess(batch_outputs[0])) return result elif isinstance(input_data, str): input_path = input_data # download internet image if input_path.startswith('http'): if not os.path.exists(BASE_IMAGES_DIR): os.makedirs(BASE_IMAGES_DIR) file_path = os.path.join(BASE_IMAGES_DIR, 'tmp.jpg') download_with_progressbar(input_path, file_path) print("Current using image from Internet:{}, renamed as: {}". format(input_path, file_path)) input_path = file_path image_list = get_image_list(input_path) total_result = [] batch_input_list = [] img_path_list = [] cnt = 0 for idx, img_path in enumerate(image_list): img = cv2.imread(img_path) if img is None: print( "Warning: Image file failed to read and has been skipped. The path: {}". format(img_path)) continue else: img = img[:, :, ::-1] data = preprocess(img, self.args) batch_input_list.append(data) img_path_list.append(img_path) cnt += 1 if cnt % self.args.batch_size == 0 or (idx + 1 ) == len(image_list): batch_outputs = self.predictor.predict( np.array(batch_input_list)) for number, output in enumerate(batch_outputs): result = {"filename": img_path_list[number]} result.update(self.postprocess(output)) result_str = "top-{} result: {}".format( self.args.top_k, result) print(result_str) total_result.append(result) if self.args.pre_label_image: save_prelabel_results(result["class_ids"][0], img_path_list[number], self.args.pre_label_out_idr) batch_input_list = [] img_path_list = [] return total_result else: print( "Error: Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL" ) return [] def main(): # for cmd args = parse_args(mMain=True) clas_engine = PaddleClas(**(args.__dict__)) print('{}{}{}'.format('*' * 10, args.image_file, '*' * 10)) total_result = clas_engine.predict(args.image_file) print("Predict complete!") if __name__ == '__main__': main()