# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Code was based on https://github.com/microsoft/Swin-Transformer # reference: https://arxiv.org/abs/2103.14030 import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import TruncatedNormal, Constant from ..model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity from ..base.theseus_layer import TheseusLayer from ....utils.save_load import load_dygraph_pretrain from ....utils import logger MODEL_URLS = { "SwinTransformer_tiny_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams", "SwinTransformer_small_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_small_patch4_window7_224_pretrained.pdparams", "SwinTransformer_base_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window7_224_pretrained.pdparams", "SwinTransformer_base_patch4_window12_384": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_base_patch4_window12_384_pretrained.pdparams", "SwinTransformer_large_patch4_window7_224": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window7_224_pretrained.pdparams", "SwinTransformer_large_patch4_window12_384": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformer_large_patch4_window12_384_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) Linear = nn.Linear def masked_fill(x, mask, value): y = paddle.full(x.shape, value, x.dtype) return paddle.where(mask, y, x) def check_support_fused_op(use_fused_linear): if use_fused_linear: if paddle.device.cuda.get_device_capability()[0] >= 8: return True else: logger.warning("The current device don't support Fused OP! Using the general Linear instead.") return False class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def pading_for_not_divisible(pixel_values, height, width, patch_size, format="BCHW", function="split"): if isinstance(patch_size, int): patch_size = (patch_size, patch_size) if height % patch_size[0] == 0 and width % patch_size[1] == 0: return pixel_values, (0, 0, 0, 0, 0, 0, 0, 0) if function == "split": pading_width = patch_size[1] - width % patch_size[1] pading_height = patch_size[0] - height % patch_size[0] elif function == "merge": pading_width = width % 2 pading_height = height % 2 if format == "BCHW": pad_index = (0, 0, 0, 0, 0, pading_height, 0, pading_width) elif format == "BHWC": pad_index = (0, 0, 0, pading_height, 0, pading_width, 0, 0) else: assert ("vaild format") return F.pad(pixel_values, pad_index), pad_index def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.reshape( [B, H // window_size, window_size, W // window_size, window_size, C]) windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape( [-1, window_size, window_size, C]) return windows def window_reverse(windows, window_size, H, W, C): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ x = windows.reshape( [-1, H // window_size, W // window_size, window_size, window_size, C]) x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C]) return x class WindowAttention(nn.Layer): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., use_fused_attn=False): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 # define a parameter table of relative position bias # 2*Wh-1 * 2*Ww-1, nH self.relative_position_bias_table = self.create_parameter( shape=((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads), default_initializer=zeros_) self.add_parameter("relative_position_bias_table", self.relative_position_bias_table) # get pair-wise relative position index for each token inside the window coords_h = paddle.arange(self.window_size[0]) coords_w = paddle.arange(self.window_size[1]) coords = paddle.stack(paddle.meshgrid( [coords_h, coords_w])) # 2, Wh, Ww coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww coords_flatten_1 = coords_flatten.unsqueeze(axis=2) coords_flatten_2 = coords_flatten.unsqueeze(axis=1) relative_coords = coords_flatten_1 - coords_flatten_2 relative_coords = relative_coords.transpose( [1, 2, 0]) # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[ 0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table) self.softmax = nn.Softmax(axis=-1) self.use_fused_attn = use_fused_attn def eval(self, ): # this is used to re-param swin for model export relative_position_bias_table = self.relative_position_bias_table window_size = self.window_size index = self.relative_position_index.reshape([-1]) relative_position_bias = paddle.index_select( relative_position_bias_table, index) relative_position_bias = relative_position_bias.reshape([ window_size[0] * window_size[1], window_size[0] * window_size[1], -1 ]) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose( [2, 0, 1]) # nH, Wh*Ww, Wh*Ww relative_position_bias = relative_position_bias.unsqueeze(0) self.register_buffer("relative_position_bias", relative_position_bias) def get_relative_position_bias(self): if self.training or not hasattr(self, "relative_position_bias"): index = self.relative_position_index.reshape([-1]) relative_position_bias = paddle.index_select( self.relative_position_bias_table, index) relative_position_bias = relative_position_bias.reshape([ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ]) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.transpose( [2, 0, 1]) # nH, Wh*Ww, Wh*Ww return relative_position_bias.unsqueeze(0) else: return self.relative_position_bias def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape( [B_, N, 3, self.num_heads, C // self.num_heads]) if self.use_fused_attn: qkv = qkv.transpose((2, 0, 1, 3, 4)) q, k, v = qkv[0], qkv[1], qkv[2] attn_mask = self.get_relative_position_bias() if mask is not None: nW = mask.shape[0] mask = mask.reshape((1, nW, 1, N, N)).expand((B_ // nW, -1, self.num_heads, -1, -1)) attn_mask = attn_mask + mask.reshape((-1, self.num_heads, N, N)) attn_mask = attn_mask.expand((B_, -1, -1, -1)) attn = paddle.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0., attn_mask=attn_mask) else: qkv = qkv.transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = paddle.mm(q, k.transpose([0, 1, 3, 2])) attn = attn + self.get_relative_position_bias() if mask is not None: nW = mask.shape[0] attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N ]) + mask.unsqueeze(1).unsqueeze(0) attn = attn.reshape([B_, self.num_heads, N, N]) attn = self.softmax(attn) attn = self.attn_drop(attn) attn = paddle.mm(attn, v) attn = attn.transpose([0, 2, 1, 3]) x = attn.reshape([B_, N, C]) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self): return "dim={}, window_size={}, num_heads={}".format( self.dim, self.window_size, self.num_heads) def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Layer): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_fused_attn=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_fused_attn=use_fused_attn) self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) H, W = self.input_resolution attn_mask = None self.register_buffer("attn_mask", attn_mask) def get_attn_mask(self, height, width, dtype): if self.shift_size > 0: # calculate attention mask for shifted window multihead self attention img_mask = paddle.zeros((1, height, width, 1), dtype=dtype) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.reshape( (-1, self.window_size * self.window_size)) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = masked_fill(attn_mask, attn_mask != 0, float(-100.0)) attn_mask = masked_fill(attn_mask, attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def forward(self, x, input_dimensions): H, W = input_dimensions B, L, C = x.shape shortcut = x x = self.norm1(x) x = x.reshape([B, H, W, C]) x, pad_values = pading_for_not_divisible(x, H, W, self.window_size, "BHWC") _, height_pad, width_pad, _ = x.shape padding_state = pad_values[3] > 0 or pad_values[ 5] > 0 # change variable name # cyclic shift if self.shift_size > 0: shifted_x = paddle.roll( x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition( shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.reshape( [-1, self.window_size * self.window_size, C]) # nW*B, window_size*window_size, C # W-MSA/SW-MSA #check did it need to calculate again attn_mask = self.get_attn_mask(height_pad, width_pad, x.dtype) attn_windows = self.attn( x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.reshape( [-1, self.window_size, self.window_size, C]) shifted_x = window_reverse(attn_windows, self.window_size, height_pad, width_pad, C) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = paddle.roll( shifted_x, shifts=(self.shift_size, self.shift_size), axis=(1, 2)) else: x = shifted_x if padding_state: x = x[:, :H, :W, :] x = x.reshape([B, H * W, C]) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self): return "dim={}, input_resolution={}, num_heads={}, window_size={}, shift_size={}, mlp_ratio={}".format( self.dim, self.input_resolution, self.num_heads, self.window_size, self.shift_size, self.mlp_ratio) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Layer): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False) self.norm = norm_layer(4 * dim) def forward(self, x, input_dimensions): """ x: B, H*W, C """ H, W = input_dimensions B, L, C = x.shape x = x.reshape([B, H, W, C]) x, _ = pading_for_not_divisible(x, H, W, 2, "BHWC", function="merge") x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = paddle.reshape(x, x.shape) x = paddle.concat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C # x = x.reshape([B, H // 2, 2, W // 2, 2, C]) # x = x.transpose((0, 1, 3, 4, 2, 5)) x = x.reshape([B, -1, 4 * C]) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self): return "input_resolution={}, dim={}".format(self.input_resolution, self.dim) def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Layer): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, use_fused_attn=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.LayerList([ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, use_fused_attn=use_fused_attn) for i in range(depth) ]) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, input_dimensions): H, W = input_dimensions for blk in self.blocks: x = blk(x, input_dimensions) if self.downsample is not None: H, W = (H + 1) // 2, (W + 1) // 2 x = self.downsample(x, input_dimensions) return x, (H, W) def extra_repr(self): return "dim={}, input_resolution={}, depth={}".format( self.dim, self.input_resolution, self.depth) def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Layer): """ Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Layer, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1] ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape x, _ = pading_for_not_divisible(x, H, W, self.patch_size, "BCHW") x = self.proj(x) _, _, height, width = x.shape output_dimensions = (height, width) x = x.flatten(2).transpose([0, 2, 1]) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x, output_dimensions def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * ( self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformer(TheseusLayer): """ Swin Transformer A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, class_num=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super(SwinTransformer, self).__init__() self.num_classes = num_classes = class_num self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2**(self.num_layers - 1)) self.mlp_ratio = mlp_ratio use_fused_attn = check_support_fused_op(kwargs.get('use_fused_attn', False)) use_fused_linear = kwargs.get('use_fused_linear', False) global Linear Linear = paddle.incubate.nn.FusedLinear if use_fused_linear else nn.Linear # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = self.create_parameter( shape=(1, num_patches, embed_dim), default_initializer=zeros_) self.add_parameter("absolute_pos_embed", self.absolute_pos_embed) trunc_normal_(self.absolute_pos_embed) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = np.linspace(0, drop_path_rate, sum(depths)).tolist() # stochastic depth decay rule # build layers self.layers = nn.LayerList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2**i_layer), input_resolution=(patches_resolution[0] // (2**i_layer), patches_resolution[1] // (2**i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, use_fused_attn=use_fused_attn) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1D(1) self.head = Linear( self.num_features, num_classes) if self.num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Linear, paddle.incubate.nn.FusedLinear)): trunc_normal_(m.weight) if m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward_features(self, x): x, output_dimensions = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x, output_dimensions = layer(x, output_dimensions) x = self.norm(x) # B L C x = self.avgpool(x.transpose([0, 2, 1])) # B C 1 x = paddle.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for _, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[ 0] * self.patches_resolution[1] // (2**self.num_layers) flops += self.num_features * self.num_classes return flops def _load_pretrained(pretrained, model, model_url, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=False, **kwargs): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain( model, model_url, use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def SwinTransformer_tiny_patch4_window7_224( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=False, **kwargs): model = SwinTransformer( embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.2, # if imagenet22k or imagenet22kto1k, set drop_path_rate=0.1 **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_tiny_patch4_window7_224"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model def SwinTransformer_small_patch4_window7_224( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=False, **kwargs): model = SwinTransformer( embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, # if imagenet22k or imagenet22kto1k, set drop_path_rate=0.2 **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_small_patch4_window7_224"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model def SwinTransformer_base_patch4_window7_224( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=False, **kwargs): model = SwinTransformer( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, drop_path_rate=0.5, # if imagenet22k or imagenet22kto1k, set drop_path_rate=0.2 **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_base_patch4_window7_224"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model def SwinTransformer_base_patch4_window12_384( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=False, **kwargs): model = SwinTransformer( img_size=384, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.5, # if imagenet22k or imagenet22kto1k, set drop_path_rate=0.2 **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_base_patch4_window12_384"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model def SwinTransformer_large_patch4_window7_224( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=True, **kwargs): model = SwinTransformer( embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_large_patch4_window7_224"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model def SwinTransformer_large_patch4_window12_384( pretrained=False, use_ssld=False, use_imagenet22k_pretrained=False, use_imagenet22kto1k_pretrained=True, **kwargs): model = SwinTransformer( img_size=384, embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SwinTransformer_large_patch4_window12_384"], use_ssld=use_ssld, use_imagenet22k_pretrained=use_imagenet22k_pretrained, use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained) return model