# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import argparse import yaml from . import logger from . import check from collections import OrderedDict __all__ = ['get_config', 'convert_to_dict'] def convert_to_dict(obj): if isinstance(obj, dict): return {k: convert_to_dict(v) for k, v in obj.items()} elif isinstance(obj, list): return [convert_to_dict(i) for i in obj] else: return obj class AttrDict(dict): def __getattr__(self, key): return self[key] def __setattr__(self, key, value): if key in self.__dict__: self.__dict__[key] = value else: self[key] = value def __deepcopy__(self, content): return AttrDict(copy.deepcopy(dict(self))) def create_attr_dict(yaml_config): from ast import literal_eval for key, value in yaml_config.items(): if type(value) is dict: yaml_config[key] = value = AttrDict(value) if isinstance(value, str): try: value = literal_eval(value) except BaseException: pass if isinstance(value, AttrDict): create_attr_dict(yaml_config[key]) else: yaml_config[key] = value def parse_config(cfg_file): """Load a config file into AttrDict""" with open(cfg_file, 'r') as fopen: yaml_config = AttrDict(yaml.load(fopen, Loader=yaml.SafeLoader)) create_attr_dict(yaml_config) return yaml_config def print_dict(d, delimiter=0): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ placeholder = "-" * 60 for k, v in d.items(): if isinstance(v, dict): logger.info("{}{} : ".format(delimiter * " ", k)) print_dict(v, delimiter + 4) elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): logger.info("{}{} : ".format(delimiter * " ", k)) for value in v: print_dict(value, delimiter + 4) else: logger.info("{}{} : {}".format(delimiter * " ", k, v)) if k[0].isupper() and delimiter == 0: logger.info(placeholder) def print_config(config): """ visualize configs Arguments: config: configs """ logger.advertise() print_dict(config) def check_config(config): """ Check config """ check.check_version() use_gpu = config.get('use_gpu', True) if use_gpu: check.check_gpu() architecture = config.get('ARCHITECTURE') #check.check_architecture(architecture) use_mix = config.get('use_mix', False) check.check_mix(architecture, use_mix) classes_num = config.get('classes_num') check.check_classes_num(classes_num) mode = config.get('mode', 'train') if mode.lower() == 'train': check.check_function_params(config, 'LEARNING_RATE') check.check_function_params(config, 'OPTIMIZER') def override(dl, ks, v): """ Recursively replace dict of list Args: dl(dict or list): dict or list to be replaced ks(list): list of keys v(str): value to be replaced """ def str2num(v): try: return eval(v) except Exception: return v assert isinstance(dl, (list, dict)), ("{} should be a list or a dict") assert len(ks) > 0, ('lenght of keys should larger than 0') if isinstance(dl, list): k = str2num(ks[0]) if len(ks) == 1: assert k < len(dl), ('index({}) out of range({})'.format(k, dl)) dl[k] = str2num(v) else: override(dl[k], ks[1:], v) else: if len(ks) == 1: # assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl)) if not ks[0] in dl: print('A new field ({}) detected!'.format(ks[0], dl)) dl[ks[0]] = str2num(v) else: if ks[0] not in dl.keys(): dl[ks[0]] = {} print("A new Series field ({}) detected!".format(ks[0], dl)) override(dl[ks[0]], ks[1:], v) def override_config(config, options=None): """ Recursively override the config Args: config(dict): dict to be replaced options(list): list of pairs(key0.key1.idx.key2=value) such as: [ 'topk=2', 'VALID.transforms.1.ResizeImage.resize_short=300' ] Returns: config(dict): replaced config """ if options is not None: for opt in options: assert isinstance(opt, str), ( "option({}) should be a str".format(opt)) assert "=" in opt, ( "option({}) should contain a =" "to distinguish between key and value".format(opt)) pair = opt.split('=') assert len(pair) == 2, ("there can be only a = in the option") key, value = pair keys = key.split('.') override(config, keys, value) return config def get_config(fname, overrides=None, show=False): """ Read config from file """ assert os.path.exists(fname), ('config file({}) is not exist'.format(fname)) config = parse_config(fname) override_config(config, overrides) if show: print_config(config) # check_config(config) return config def parse_args(): parser = argparse.ArgumentParser("generic-image-rec train script") parser.add_argument( '-c', '--config', type=str, default='configs/config.yaml', help='config file path') parser.add_argument( '-o', '--override', action='append', default=[], help='config options to be overridden') parser.add_argument( '-p', '--profiler_options', type=str, default=None, help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".' ) args = parser.parse_args() return args def represent_dictionary_order(self, dict_data): return self.represent_mapping('tag:yaml.org,2002:map', dict_data.items()) def setup_orderdict(): yaml.add_representer(OrderedDict, represent_dictionary_order) def dump_infer_config(inference_config, path): setup_orderdict() infer_cfg = OrderedDict() config = copy.deepcopy(inference_config) if config["Global"].get("pdx_model_name", None): infer_cfg["Global"] = {"model_name": config["Global"]["pdx_model_name"]} if config.get("Infer"): transforms = config["Infer"]["transforms"] elif config["DataLoader"]["Eval"].get("Query"): transforms = config["DataLoader"]["Eval"]["Query"]["dataset"][ "transform_ops"] transforms.append({"ToCHWImage": None}) elif config["DataLoader"]["Eval"].get("dataset"): transforms = config["DataLoader"]["Eval"]["dataset"]["transform_ops"] transforms.append({"ToCHWImage": None}) else: logger.error("This config does not support dump transform config!") transform = next((item for item in transforms if 'CropImage' in item), None) if transform: dynamic_shapes = transform["CropImage"]["size"] else: transform = next((item for item in transforms if 'ResizeImage' in item), None) if transform: if isinstance(transform["ResizeImage"]["size"], list): dynamic_shapes = transform["ResizeImage"]["size"][0] elif isinstance(transform["ResizeImage"]["size"], int): dynamic_shapes = transform["ResizeImage"]["size"] else: raise ValueError( "ResizeImage size must be either a list or an int.") else: raise ValueError("No valid transform found.") # Configuration required config for high-performance inference. if config["Global"].get("hpi_config_path", None): hpi_config = convert_to_dict( parse_config(config["Global"]["hpi_config_path"])) if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None): hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][ "dynamic_shapes"]["x"] = [[ 1, 3, dynamic_shapes, dynamic_shapes ] for i in range(3)] hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][ "max_batch_size"] = 1 if hpi_config["Hpi"]["backend_config"].get("tensorrt", None): hpi_config["Hpi"]["backend_config"]["tensorrt"]["dynamic_shapes"][ "x"] = [[1, 3, dynamic_shapes, dynamic_shapes] for i in range(3)] hpi_config["Hpi"]["backend_config"]["tensorrt"][ "max_batch_size"] = 1 infer_cfg["Hpi"] = hpi_config["Hpi"] for transform in transforms: if "NormalizeImage" in transform: transform["NormalizeImage"]["channel_num"] = 3 scale_str = transform["NormalizeImage"]["scale"] numerator, denominator = scale_str.split('/') numerator, denominator = float(numerator), float(denominator) transform["NormalizeImage"]["scale"] = float(numerator / denominator) infer_cfg["PreProcess"] = { "transform_ops": [ infer_preprocess for infer_preprocess in transforms if "DecodeImage" not in infer_preprocess ] } if config.get("Infer"): postprocess_dict = config["Infer"]["PostProcess"] with open(postprocess_dict["class_id_map_file"], 'r') as f: label_id_maps = f.readlines() label_names = [] for line in label_id_maps: line = line.strip().split(' ', 1) label_names.append(line[1:][0]) postprocess_name = postprocess_dict.get("name", None) postprocess_dict.pop("class_id_map_file") postprocess_dict.pop("name") dic = OrderedDict() for item in postprocess_dict.items(): dic[item[0]] = item[1] dic['label_list'] = label_names if postprocess_name: infer_cfg["PostProcess"] = {postprocess_name: dic} else: raise ValueError("PostProcess name is not specified") else: infer_cfg["PostProcess"] = {"NormalizeFeatures": None} with open(path, 'w') as f: yaml.dump(infer_cfg, f) logger.info("Export inference config file to {}".format(os.path.join(path)))