# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from ppcls.data.preprocess.ops.fmix import sample_mask class BatchOperator(object): """ BatchOperator """ def __init__(self, *args, **kwargs): pass def _unpack(self, batch): """ _unpack """ assert isinstance(batch, list), \ 'batch should be a list filled with tuples (img, label)' bs = len(batch) assert bs > 0, 'size of the batch data should > 0' #imgs, labels = list(zip(*batch)) imgs = [] labels = [] for item in batch: imgs.append(item[0]) labels.append(item[1]) return np.array(imgs), np.array(labels), bs def __call__(self, batch): return batch class MixupOperator(BatchOperator): """Mixup and Cutmix operator""" def __init__(self, mixup_alpha: float=1., cutmix_alpha: float=0., switch_prob: float=0.5): """Build Mixup operator Args: mixup_alpha (float, optional): The parameter alpha of mixup, mixup is active if > 0. Defaults to 1.. cutmix_alpha (float, optional): The parameter alpha of cutmix, cutmix is active if > 0. Defaults to 0.. switch_prob (float, optional): The probability of switching to cutmix instead of mixup when both are active. Defaults to 0.5. Raises: Exception: The value of parameters are illegal. """ if mixup_alpha <= 0 and cutmix_alpha <= 0: raise Exception( f"At least one of parameter alpha of Mixup and Cutmix is greater than 0. mixup_alpha: {mixup_alpha}, cutmix_alpha: {cutmix_alpha}" ) self._mixup_alpha = mixup_alpha self._cutmix_alpha = cutmix_alpha self._switch_prob = switch_prob def _mixup(self, imgs, labels, bs): idx = np.random.permutation(bs) lam = np.random.beta(self._mixup_alpha, self._mixup_alpha) lams = np.array([lam] * bs, dtype=np.float32) imgs = lam * imgs + (1 - lam) * imgs[idx] return list(zip(imgs, labels, labels[idx], lams)) def _rand_bbox(self, size, lam): """ _rand_bbox """ w = size[2] h = size[3] cut_rat = np.sqrt(1. - lam) cut_w = int(w * cut_rat) cut_h = int(h * cut_rat) # uniform cx = np.random.randint(w) cy = np.random.randint(h) bbx1 = np.clip(cx - cut_w // 2, 0, w) bby1 = np.clip(cy - cut_h // 2, 0, h) bbx2 = np.clip(cx + cut_w // 2, 0, w) bby2 = np.clip(cy + cut_h // 2, 0, h) return bbx1, bby1, bbx2, bby2 def _cutmix(self, imgs, labels, bs): idx = np.random.permutation(bs) lam = np.random.beta(self._cutmix_alpha, self._cutmix_alpha) bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam) imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2] lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) / (imgs.shape[-2] * imgs.shape[-1])) lams = np.array([lam] * bs, dtype=np.float32) return list(zip(imgs, labels, labels[idx], lams)) def __call__(self, batch): imgs, labels, bs = self._unpack(batch) if np.random.rand() < self._switch_prob: return self._cutmix(imgs, labels, bs) else: return self._mixup(imgs, labels, bs) class CutmixOperator(BatchOperator): def __init__(self, **kwargs): raise Exception( f"\"CutmixOperator\" has been deprecated. Please use MixupOperator with \"cutmix_alpha\" and \"switch_prob\" to enable Cutmix. Refor to doc for details." ) class FmixOperator(BatchOperator): """ Fmix operator """ def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False): self._alpha = alpha self._decay_power = decay_power self._max_soft = max_soft self._reformulate = reformulate def __call__(self, batch): imgs, labels, bs = self._unpack(batch) idx = np.random.permutation(bs) size = (imgs.shape[2], imgs.shape[3]) lam, mask = sample_mask(self._alpha, self._decay_power, \ size, self._max_soft, self._reformulate) imgs = mask * imgs + (1 - mask) * imgs[idx] return list(zip(imgs, labels, labels[idx], [lam] * bs))