# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage try: from paddle_serving_server_gpu.web_service import WebService, Op except ImportError: from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import base64, cv2 import os import faiss import pickle class RecogOp(Op): def init_op(self): self.seq = Sequential([ Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) #load index; and return top1 index_dir = "../../recognition_demo_data_v1.1/gallery_product/index" assert os.path.exists(os.path.join( index_dir, "vector.index")), "vector.index not found ..." assert os.path.exists(os.path.join( index_dir, "id_map.pkl")), "id_map.pkl not found ... " self.searcher = faiss.read_index( os.path.join(index_dir, "vector.index")) with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd: self.id_map = pickle.load(fd) def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() batch_size = len(input_dict.keys()) imgs = [] for key in input_dict.keys(): data = base64.b64decode(input_dict[key].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) img = self.seq(im) imgs.append(img[np.newaxis, :].copy()) input_imgs = np.concatenate(imgs, axis=0) return {"x": input_imgs}, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): score_list = fetch_dict["features"] return_top_k = 1 scores, docs = self.searcher.search(score_list, return_top_k) result = {} result["label"] = self.id_map[docs[0][0]].split()[1] result["dist"] = str(scores[0][0]) return result, None, "" class ProductRecognitionService(WebService): def get_pipeline_response(self, read_op): image_op = RecogOp(name="recog", input_ops=[read_op]) return image_op uci_service = ProductRecognitionService(name="recog_service") uci_service.prepare_pipeline_config("config.yml") uci_service.run_service()