# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import time import requests import json import base64 import argparse import numpy as np import cv2 from utils import logger from utils.get_image_list import get_image_list from utils import config from utils.encode_decode import np_to_b64 from python.preprocess import create_operators def get_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("--server_url", type=str) parser.add_argument("--image_file", type=str) parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--resize_short", type=int, default=256) parser.add_argument("--crop_size", type=int, default=224) parser.add_argument("--normalize", type=str2bool, default=True) parser.add_argument("--to_chw", type=str2bool, default=True) return parser.parse_args() class PreprocessConfig(object): def __init__(self, resize_short=256, crop_size=224, normalize=True, to_chw=True): self.config = [{ 'ResizeImage': { 'resize_short': resize_short } }, { 'CropImage': { 'size': crop_size } }] if normalize: self.config.append({ 'NormalizeImage': { 'scale': 0.00392157, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'order': '' } }) if to_chw: self.config.append({'ToCHWImage': None}) def __call__(self): return self.config def main(args): image_path_list = get_image_list(args.image_file) headers = {"Content-type": "application/json"} preprocess_ops = create_operators( PreprocessConfig(args.resize_short, args.crop_size, args.normalize, args.to_chw)()) cnt = 0 predict_time = 0 all_score = 0.0 start_time = time.time() img_data_list = [] img_name_list = [] cnt = 0 for idx, img_path in enumerate(image_path_list): img = cv2.imread(img_path) if img is None: logger.warning( f"Image file failed to read and has been skipped. The path: {img_path}" ) continue else: img = img[:, :, ::-1] for ops in preprocess_ops: img = ops(img) img = np.array(img) img_data_list.append(img) img_name = img_path.split('/')[-1] img_name_list.append(img_name) cnt += 1 if cnt % args.batch_size == 0 or (idx + 1) == len(image_path_list): inputs = np.array(img_data_list) b64str, revert_shape = np_to_b64(inputs) data = { "images": b64str, "revert_params": { "shape": revert_shape, "dtype": str(inputs.dtype) } } try: r = requests.post( url=args.server_url, headers=headers, data=json.dumps(data)) r.raise_for_status if r.json()["status"] != "000": msg = r.json()["msg"] raise Exception(msg) except Exception as e: logger.error(f"{e}, in file(s): {img_name_list[0]} etc.") continue else: results = r.json()["results"] preds = results["prediction"] elapse = results["elapse"] cnt += len(preds) predict_time += elapse for number, result_list in enumerate(preds): all_score += result_list["scores"][0] pred_str = ", ".join( [f"{k}: {result_list[k]}" for k in result_list]) logger.info( f"File:{img_name_list[number]}, The result(s): {pred_str}" ) finally: img_data_list = [] img_name_list = [] total_time = time.time() - start_time logger.info("The average time of prediction cost: {:.3f} s/image".format( predict_time / cnt)) logger.info("The average time cost: {:.3f} s/image".format(total_time / cnt)) logger.info("The average top-1 score: {:.3f}".format(all_score / cnt)) if __name__ == '__main__': args = get_args() main(args)