# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/2103.13425, https://github.com/DingXiaoH/DiverseBranchBlock import numpy as np import paddle import paddle.nn.functional as F def transI_fusebn(kernel, bn): gamma = bn.weight std = (bn._variance + bn._epsilon).sqrt() return kernel * ( (gamma / std).reshape([-1, 1, 1, 1])), bn.bias - bn._mean * gamma / std def transII_addbranch(kernels, biases): return sum(kernels), sum(biases) def transIII_1x1_kxk(k1, b1, k2, b2, groups): if groups == 1: k = F.conv2d(k2, k1.transpose([1, 0, 2, 3])) b_hat = (k2 * b1.reshape([1, -1, 1, 1])).sum((1, 2, 3)) else: k_slices = [] b_slices = [] k1_T = k1.transpose([1, 0, 2, 3]) k1_group_width = k1.shape[0] // groups k2_group_width = k2.shape[0] // groups for g in range(groups): k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :] k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :] k_slices.append(F.conv2d(k2_slice, k1_T_slice)) b_slices.append((k2_slice * b1[g * k1_group_width:( g + 1) * k1_group_width].reshape([1, -1, 1, 1])).sum((1, 2, 3 ))) k, b_hat = transIV_depthconcat(k_slices, b_slices) return k, b_hat + b2 def transIV_depthconcat(kernels, biases): return paddle.cat(kernels, axis=0), paddle.cat(biases) def transV_avg(channels, kernel_size, groups): input_dim = channels // groups k = paddle.zeros((channels, input_dim, kernel_size, kernel_size)) k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size**2 return k # This has not been tested with non-square kernels (kernel.shape[2] != kernel.shape[3]) nor even-size kernels def transVI_multiscale(kernel, target_kernel_size): H_pixels_to_pad = (target_kernel_size - kernel.shape[2]) // 2 W_pixels_to_pad = (target_kernel_size - kernel.shape[3]) // 2 return F.pad( kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])