2.4 KiB
2.4 KiB
Multilabel classification quick start
Based on the NUS-WIDE-SCENE dataset which is a subset of NUS-WIDE dataset, you can experience multilabel of PaddleClas, include training, evaluation and prediction. Please refer to Installation to install at first.
Preparation
- Enter PaddleClas directory
cd path_to_PaddleClas
- Create and enter
dataset/NUS-WIDE-SCENE
directory, download and decompress NUS-WIDE-SCENE dataset
mkdir dataset/NUS-WIDE-SCENE
cd dataset/NUS-WIDE-SCENE
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
tar -xf NUS-SCENE-dataset.tar
- Return
PaddleClas
root home
cd ../../
Training
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml
After training for 10 epochs, the best accuracy over the validation set should be around 0.95.
Evaluation
python tools/eval.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
Prediction
python3 tools/infer.py
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
You will get multiple output such as the following:
[{'class_ids': [6, 13, 17, 23, 26, 30], 'scores': [0.95683, 0.5567, 0.55211, 0.99088, 0.5943, 0.78767], 'file_name': './deploy/images/0517_2715693311.jpg', 'label_names': []}]
Prediction based on prediction engine
Export model
python3 tools/export_model.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
The default path of the inference model is under the current path ./inference
Prediction based on prediction engine
Enter the deploy directory:
cd ./deploy
Prediction based on prediction engine:
python3 python/predict_cls.py \
-c configs/inference_multilabel_cls.yaml
You will get multiple output such as the following:
0517_2715693311.jpg: class id(s): [6, 13, 17, 23, 26, 30], score(s): [0.96, 0.56, 0.55, 0.99, 0.59, 0.79], label_name(s): []