PaddleClas/ppcls/data/__init__.py

198 lines
7.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import copy
import random
import paddle
import numpy as np
import paddle.distributed as dist
from functools import partial
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
from ppcls.utils import logger
from ppcls.data import dataloader
# dataset
from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
from ppcls.data.dataloader.common_dataset import create_operators
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
from ppcls.data.dataloader.logo_dataset import LogoDataset
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17, DukeMTMC
from ppcls.data.dataloader.face_dataset import FaceEvalDataset, FiveFaceEvalDataset
from ppcls.data.dataloader.custom_label_dataset import CustomLabelDataset
from ppcls.data.dataloader.cifar import Cifar10, Cifar100
from ppcls.data.dataloader.metabin_sampler import DomainShuffleBatchSampler, NaiveIdentityBatchSampler
# sampler
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data.dataloader.ra_sampler import RASampler
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
def create_operators(params, class_num=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(params, list), ('operator config should be a list')
ops = []
for operator in params:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
op_func = getattr(preprocess, op_name)
if "class_num" in inspect.getfullargspec(op_func).args:
param.update({"class_num": class_num})
op = op_func(**param)
ops.append(op)
return ops
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
"""callback function on each worker subprocess after seeding and before data loading.
Args:
worker_id (int): Worker id in [0, num_workers - 1]
num_workers (int): Number of subprocesses to use for data loading.
rank (int): Rank of process in distributed environment. If in non-distributed environment, it is a constant number `0`.
seed (int): Random seed
"""
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_dataloader(config, mode, device, use_dali=False, seed=None):
assert mode in [
'Train', 'Eval', 'Test', 'Gallery', 'Query', 'UnLabelTrain'
], "Dataset mode should be Train, Eval, Test, Gallery, Query, UnLabelTrain"
assert mode in config.keys(), "{} config not in yaml".format(mode)
# build dataset
if use_dali and paddle.device.is_compiled_with_cuda():
from ppcls.data.dataloader.dali import dali_dataloader
return dali_dataloader(
config,
mode,
paddle.device.get_device(),
num_threads=config[mode]['loader']["num_workers"],
seed=seed,
enable_fuse=True)
class_num = config.get("class_num", None)
epochs = config.get("epochs", None)
config_dataset = config[mode]['dataset']
config_dataset = copy.deepcopy(config_dataset)
dataset_name = config_dataset.pop('name')
if 'batch_transform_ops' in config_dataset:
batch_transform = config_dataset.pop('batch_transform_ops')
else:
batch_transform = None
dataset = eval(dataset_name)(**config_dataset)
logger.debug("build dataset({}) success...".format(dataset))
# build sampler
config_sampler = config[mode]['sampler']
if config_sampler and "name" not in config_sampler:
batch_sampler = None
batch_size = config_sampler["batch_size"]
drop_last = config_sampler["drop_last"]
shuffle = config_sampler["shuffle"]
else:
sampler_name = config_sampler.pop("name")
sampler_argspec = inspect.getfullargspec(eval(sampler_name)
.__init__).args
if "total_epochs" in sampler_argspec:
config_sampler.update({"total_epochs": epochs})
batch_sampler = eval(sampler_name)(dataset, **config_sampler)
logger.debug("build batch_sampler({}) success...".format(batch_sampler))
# build batch operator
def mix_collate_fn(batch):
batch = transform(batch, batch_ops)
# batch each field
slots = []
for items in batch:
for i, item in enumerate(items):
if len(slots) < len(items):
slots.append([item])
else:
slots[i].append(item)
return [np.stack(slot, axis=0) for slot in slots]
if isinstance(batch_transform, list):
batch_ops = create_operators(batch_transform, class_num)
batch_collate_fn = mix_collate_fn
else:
batch_collate_fn = None
# build dataloader
config_loader = config[mode]['loader']
num_workers = config_loader["num_workers"]
use_shared_memory = config_loader["use_shared_memory"]
init_fn = partial(
worker_init_fn,
num_workers=num_workers,
rank=dist.get_rank(),
seed=seed) if seed is not None else None
if batch_sampler is None:
data_loader = DataLoader(
dataset=dataset,
places=device,
num_workers=num_workers,
return_list=True,
use_shared_memory=use_shared_memory,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last,
collate_fn=batch_collate_fn,
worker_init_fn=init_fn)
else:
data_loader = DataLoader(
dataset=dataset,
places=device,
num_workers=num_workers,
return_list=True,
use_shared_memory=use_shared_memory,
batch_sampler=batch_sampler,
collate_fn=batch_collate_fn,
worker_init_fn=init_fn)
logger.debug("build data_loader({}) success...".format(data_loader))
return data_loader
# for PaddleX
ClsDataset = ImageNetDataset
ShiTuRecDataset = ImageNetDataset
MLClsDataset = MultiLabelDataset