PaddleClas/deploy/utils/predictor.py
Tingquan Gao 0615d4beb3
bugfix for deploy (#3313)
* for 3.0.0beta0

* fix path in windows

* v2.6.2 dont support to pass directory of model files
2024-12-10 22:10:48 +08:00

142 lines
5.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import os
import argparse
import base64
import shutil
import cv2
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
class Predictor(object):
def __init__(self, args, inference_model_dir=None):
# HALF precission predict only work when using tensorrt
if args.use_fp16 is True:
assert args.use_tensorrt is True
self.args = args
if self.args.get("use_onnx", False):
self.predictor, self.config = self.create_onnx_predictor(
args, inference_model_dir)
else:
self.predictor, self.config = self.create_paddle_predictor(
args, inference_model_dir)
def predict(self, image):
raise NotImplementedError
def create_paddle_predictor(self, args, inference_model_dir=None):
if inference_model_dir is None:
inference_model_dir = args.inference_model_dir
if "inference_int8.pdiparams" in os.listdir(inference_model_dir):
model_prefix = "inference_int8"
assert args.get(
"use_fp16", False
) is False, "fp16 mode is not supported for int8 model inference, please set use_fp16 as False during inference."
else:
model_prefix = "inference"
assert args.get(
"use_int8", False
) is False, "int8 mode is not supported for fp32 model inference, please set use_int8 as False during inference."
# NOTE: paddle support to PIR mode after v2.6.0
major_v, minor_v, _ = paddle.__version__.split(".")[:3]
major_v, minor_v = int(major_v), int(minor_v)
if (major_v == 0 and minor_v == 0) or (major_v >= 3):
config = Config(inference_model_dir, model_prefix)
else:
model_file = os.path.join(inference_model_dir, f"{model_prefix}.pdmodel")
params_file = os.path.join(inference_model_dir, f"{model_prefix}.pdiparams")
config = Config(model_file, params_file)
if args.get("use_gpu", False):
config.enable_use_gpu(args.gpu_mem, 0)
elif args.get("use_npu", False):
config.enable_custom_device('npu')
elif args.get("use_xpu", False):
config.enable_xpu()
elif args.get("use_mlu", False):
config.enable_custom_device('mlu')
elif args.get("use_gcu", False):
assert paddle.device.is_compiled_with_custom_device("gcu"), (
"Config use_gcu cannot be set as True while your paddle "
"is not compiled with gcu! \nPlease try: \n"
"\t1. Install paddle-custom-gcu to run model on GCU. \n"
"\t2. Set use_gcu as False in config file to run model on CPU."
)
import paddle_custom_device.gcu.passes as gcu_passes
gcu_passes.setUp()
config.enable_custom_device("gcu")
config.enable_new_ir(True)
config.enable_new_executor(True)
kPirGcuPasses = gcu_passes.inference_passes(
use_pir=True, name="PaddleClas"
)
config.enable_custom_passes(kPirGcuPasses, True)
else:
config.disable_gpu()
if args.enable_mkldnn:
# there is no set_mkldnn_cache_capatity() on macOS
if platform.system() != "Darwin":
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.set_cpu_math_library_num_threads(args.cpu_num_threads)
if args.enable_profile:
config.enable_profile()
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
precision = Config.Precision.Float32
if args.get("use_int8", False):
precision = Config.Precision.Int8
elif args.get("use_fp16", False):
precision = Config.Precision.Half
config.enable_tensorrt_engine(
precision_mode=precision,
max_batch_size=args.batch_size,
workspace_size=1 << 30,
min_subgraph_size=30,
use_calib_mode=False)
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
return predictor, config
def create_onnx_predictor(self, args, inference_model_dir=None):
import onnxruntime as ort
if inference_model_dir is None:
inference_model_dir = args.inference_model_dir
model_file = os.path.join(inference_model_dir, "inference.onnx")
config = ort.SessionOptions()
if args.use_gpu:
raise ValueError(
"onnx inference now only supports cpu! please specify use_gpu false."
)
else:
config.intra_op_num_threads = args.cpu_num_threads
if args.ir_optim:
config.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
predictor = ort.InferenceSession(model_file, sess_options=config)
return predictor, config