69 lines
3.3 KiB
Bash
69 lines
3.3 KiB
Bash
#!/usr/bin/env bash
|
||
set -xe
|
||
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
|
||
# 参数说明
|
||
function _set_params(){
|
||
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
||
batch_size=${2:-"64"}
|
||
fp_item=${3:-"fp32"} # fp32|fp16
|
||
epochs=${4:-"2"} # 可选,如果需要修改代码提前中断
|
||
model_item=${5:-"model_item"}
|
||
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
|
||
|
||
index=1
|
||
mission_name="图像分类" # 模型所属任务名称,具体可参考scripts/config.ini (必填)
|
||
direction_id=0 # 任务所属方向,0:CV,1:NLP,2:Rec。 (必填)
|
||
skip_steps=8 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
|
||
keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
|
||
keyword_loss="loss:" #选填
|
||
model_mode=-1 # 解析日志,具体参考scripts/analysis.py. (必填)
|
||
ips_unit="images/s"
|
||
base_batch_size=$batch_size
|
||
# 以下不用修改
|
||
device=${CUDA_VISIBLE_DEVICES//,/ }
|
||
arr=(${device})
|
||
num_gpu_devices=${#arr[*]}
|
||
log_file=${run_log_path}/clas_${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
|
||
model_name=${model_item}_bs${batch_size}_${fp_item} # model_item 用于yml匹配,model_name用于入库
|
||
}
|
||
function _train(){
|
||
echo "Train on ${num_gpu_devices} GPUs"
|
||
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
||
|
||
if [ ${fp_item} = "fp32" ];then
|
||
model_config=`find ppcls/configs/ImageNet -name ${model_item}.yaml`
|
||
else
|
||
model_config=`find ppcls/configs/ImageNet -name ${model_item}_fp16.yaml`
|
||
fi
|
||
|
||
train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs} -o Global.eval_during_train=False -o Global.print_batch_step=2"
|
||
case ${run_mode} in
|
||
sp) train_cmd="python -u tools/train.py ${train_cmd}" ;;
|
||
mp)
|
||
train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
|
||
log_parse_file="mylog/workerlog.0" ;;
|
||
*) echo "choose run_mode(sp or mp)"; exit 1;
|
||
esac
|
||
rm -rf mylog
|
||
# 以下不用修改
|
||
timeout 5m ${train_cmd} > ${log_file} 2>&1
|
||
if [ $? -ne 0 ];then
|
||
echo -e "${model_name}, FAIL"
|
||
export job_fail_flag=1
|
||
else
|
||
echo -e "${model_name}, SUCCESS"
|
||
export job_fail_flag=0
|
||
fi
|
||
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
|
||
|
||
if [ $run_mode = "mp" -a -d mylog ]; then
|
||
rm ${log_file}
|
||
cp mylog/workerlog.0 ${log_file}
|
||
fi
|
||
}
|
||
|
||
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
||
_set_params $@
|
||
_run
|
||
#_train
|