PaddleClas/test_tipc/test_serving_infer_python.sh

319 lines
14 KiB
Bash

#!/bin/bash
source test_tipc/common_func.sh
FILENAME=$1
MODE=$2
dataline=$(awk 'NR==1, NR==19{print}' $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
function func_get_url_file_name(){
strs=$1
IFS="/"
array=(${strs})
tmp=${array[${#array[@]}-1]}
echo ${tmp}
}
# parser serving
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
trans_model_py=$(func_parser_value "${lines[4]}")
infer_model_dir_key=$(func_parser_key "${lines[5]}")
infer_model_dir_value=$(func_parser_value "${lines[5]}")
model_filename_key=$(func_parser_key "${lines[6]}")
model_filename_value=$(func_parser_value "${lines[6]}")
params_filename_key=$(func_parser_key "${lines[7]}")
params_filename_value=$(func_parser_value "${lines[7]}")
serving_server_key=$(func_parser_key "${lines[8]}")
serving_server_value=$(func_parser_value "${lines[8]}")
serving_client_key=$(func_parser_key "${lines[9]}")
serving_client_value=$(func_parser_value "${lines[9]}")
serving_dir_value=$(func_parser_value "${lines[10]}")
web_service_py=$(func_parser_value "${lines[11]}")
web_use_gpu_key=$(func_parser_key "${lines[12]}")
web_use_gpu_list=$(func_parser_value "${lines[12]}")
pipeline_py=$(func_parser_value "${lines[13]}")
function func_serving_cls(){
LOG_PATH="test_tipc/output/${model_name}/${MODE}"
mkdir -p ${LOG_PATH}
LOG_PATH="../../${LOG_PATH}"
status_log="${LOG_PATH}/results_serving.log"
IFS='|'
# pdserving
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
for python_ in ${python[*]}; do
if [[ ${python_} =~ "python" ]]; then
trans_model_cmd="${python_} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval ${trans_model_cmd}
break
fi
done
# modify the alias_name of fetch_var to "outputs"
server_fetch_var_line_cmd="sed -i '/fetch_var/,/is_lod_tensor/s/alias_name: .*/alias_name: \"prediction\"/' ${serving_server_value}/serving_server_conf.prototxt"
eval ${server_fetch_var_line_cmd}
client_fetch_var_line_cmd="sed -i '/fetch_var/,/is_lod_tensor/s/alias_name: .*/alias_name: \"prediction\"/' ${serving_client_value}/serving_client_conf.prototxt"
eval ${client_fetch_var_line_cmd}
prototxt_dataline=$(awk 'NR==1, NR==3{print}' ${serving_server_value}/serving_server_conf.prototxt)
IFS=$'\n'
prototxt_lines=(${prototxt_dataline})
feed_var_name=$(func_parser_value "${prototxt_lines[2]}")
IFS='|'
cd ${serving_dir_value}
unset https_proxy
unset http_proxy
# python serving
# modify the input_name in "classification_web_service.py" to be consistent with feed_var.name in prototxt
set_web_service_feed_var_cmd="sed -i '/preprocess/,/input_imgs}/s/{.*: input_imgs}/{${feed_var_name}: input_imgs}/' ${web_service_py}"
eval ${set_web_service_feed_var_cmd}
model_config=21
serving_server_dir_name=$(func_get_url_file_name "$serving_server_value")
set_model_config_cmd="sed -i '${model_config}s/model_config: .*/model_config: ${serving_server_dir_name}/' config.yml"
eval ${set_model_config_cmd}
for use_gpu in ${web_use_gpu_list[*]}; do
if [[ ${use_gpu} = "null" ]]; then
device_type_line=24
set_device_type_cmd="sed -i '${device_type_line}s/device_type: .*/device_type: 0/' config.yml"
eval ${set_device_type_cmd}
devices_line=27
set_devices_cmd="sed -i '${devices_line}s/devices: .*/devices: \"\"/' config.yml"
eval ${set_devices_cmd}
web_service_cmd="${python_} ${web_service_py} &"
eval ${web_service_cmd}
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 5s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_${pipeline%_client*}_batchsize_1.log"
pipeline_cmd="${python_} ${pipeline} > ${_save_log_path} 2>&1 "
eval ${pipeline_cmd}
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
sleep 5s
done
eval "${python_} -m paddle_serving_server.serve stop"
elif [ ${use_gpu} -eq 0 ]; then
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
device_type_line=24
set_device_type_cmd="sed -i '${device_type_line}s/device_type: .*/device_type: 1/' config.yml"
eval ${set_device_type_cmd}
devices_line=27
set_devices_cmd="sed -i '${devices_line}s/devices: .*/devices: \"${use_gpu}\"/' config.yml"
eval ${set_devices_cmd}
web_service_cmd="${python_} ${web_service_py} & "
eval ${web_service_cmd}
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 5s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_gpu_${pipeline%_client*}_batchsize_1.log"
pipeline_cmd="${python_} ${pipeline} > ${_save_log_path} 2>&1"
eval ${pipeline_cmd}
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
sleep 5s
done
eval "${python_} -m paddle_serving_server.serve stop"
else
echo "Does not support hardware [${use_gpu}] other than CPU and GPU Currently!"
fi
done
}
function func_serving_rec(){
LOG_PATH="test_tipc/output/${model_name}/${MODE}"
mkdir -p ${LOG_PATH}
LOG_PATH="../../../${LOG_PATH}"
status_log="${LOG_PATH}/results_serving.log"
trans_model_py=$(func_parser_value "${lines[5]}")
cls_infer_model_dir_key=$(func_parser_key "${lines[6]}")
cls_infer_model_dir_value=$(func_parser_value "${lines[6]}")
det_infer_model_dir_key=$(func_parser_key "${lines[7]}")
det_infer_model_dir_value=$(func_parser_value "${lines[7]}")
model_filename_key=$(func_parser_key "${lines[8]}")
model_filename_value=$(func_parser_value "${lines[8]}")
params_filename_key=$(func_parser_key "${lines[9]}")
params_filename_value=$(func_parser_value "${lines[9]}")
cls_serving_server_key=$(func_parser_key "${lines[10]}")
cls_serving_server_value=$(func_parser_value "${lines[10]}")
cls_serving_client_key=$(func_parser_key "${lines[11]}")
cls_serving_client_value=$(func_parser_value "${lines[11]}")
det_serving_server_key=$(func_parser_key "${lines[12]}")
det_serving_server_value=$(func_parser_value "${lines[12]}")
det_serving_client_key=$(func_parser_key "${lines[13]}")
det_serving_client_value=$(func_parser_value "${lines[13]}")
serving_dir_value=$(func_parser_value "${lines[14]}")
web_service_py=$(func_parser_value "${lines[15]}")
web_use_gpu_key=$(func_parser_key "${lines[16]}")
web_use_gpu_list=$(func_parser_value "${lines[16]}")
pipeline_py=$(func_parser_value "${lines[17]}")
IFS='|'
for python_ in ${python[*]}; do
if [[ ${python_} =~ "python" ]]; then
python_interp=${python_}
break
fi
done
# pdserving
cd ./deploy
set_dirname=$(func_set_params "${cls_infer_model_dir_key}" "${cls_infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${cls_serving_server_key}" "${cls_serving_server_value}")
set_serving_client=$(func_set_params "${cls_serving_client_key}" "${cls_serving_client_value}")
cls_trans_model_cmd="${python_interp} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval ${cls_trans_model_cmd}
set_dirname=$(func_set_params "${det_infer_model_dir_key}" "${det_infer_model_dir_value}")
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
set_serving_server=$(func_set_params "${det_serving_server_key}" "${det_serving_server_value}")
set_serving_client=$(func_set_params "${det_serving_client_key}" "${det_serving_client_value}")
det_trans_model_cmd="${python_interp} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
eval ${det_trans_model_cmd}
# modify the alias_name of fetch_var to "outputs"
server_fetch_var_line_cmd="sed -i '/fetch_var/,/is_lod_tensor/s/alias_name: .*/alias_name: \"features\"/' $cls_serving_server_value/serving_server_conf.prototxt"
eval ${server_fetch_var_line_cmd}
client_fetch_var_line_cmd="sed -i '/fetch_var/,/is_lod_tensor/s/alias_name: .*/alias_name: \"features\"/' $cls_serving_client_value/serving_client_conf.prototxt"
eval ${client_fetch_var_line_cmd}
prototxt_dataline=$(awk 'NR==1, NR==3{print}' ${cls_serving_server_value}/serving_server_conf.prototxt)
IFS=$'\n'
prototxt_lines=(${prototxt_dataline})
feed_var_name=$(func_parser_value "${prototxt_lines[2]}")
IFS='|'
cd ${serving_dir_value}
unset https_proxy
unset http_proxy
# modify the input_name in "recognition_web_service.py" to be consistent with feed_var.name in prototxt
set_web_service_feed_var_cmd="sed -i '/preprocess/,/input_imgs}/s/{.*: input_imgs}/{${feed_var_name}: input_imgs}/' ${web_service_py}"
eval ${set_web_service_feed_var_cmd}
# python serving
for use_gpu in ${web_use_gpu_list[*]}; do
if [[ ${use_gpu} = "null" ]]; then
device_type_line=24
set_device_type_cmd="sed -i '${device_type_line}s/device_type: .*/device_type: 0/' config.yml"
eval ${set_device_type_cmd}
devices_line=27
set_devices_cmd="sed -i '${devices_line}s/devices: .*/devices: \"\"/' config.yml"
eval ${set_devices_cmd}
web_service_cmd="${python} ${web_service_py} &"
eval ${web_service_cmd}
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 5s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_cpu_${pipeline%_client*}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} > ${_save_log_path} 2>&1 "
eval ${pipeline_cmd}
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
sleep 5s
done
eval "${python_} -m paddle_serving_server.serve stop"
elif [ ${use_gpu} -eq 0 ]; then
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
continue
fi
device_type_line=24
set_device_type_cmd="sed -i '${device_type_line}s/device_type: .*/device_type: 1/' config.yml"
eval ${set_device_type_cmd}
devices_line=27
set_devices_cmd="sed -i '${devices_line}s/devices: .*/devices: \"${use_gpu}\"/' config.yml"
eval ${set_devices_cmd}
web_service_cmd="${python} ${web_service_py} & "
eval ${web_service_cmd}
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 10s
for pipeline in ${pipeline_py[*]}; do
_save_log_path="${LOG_PATH}/server_infer_gpu_${pipeline%_client*}_batchsize_1.log"
pipeline_cmd="${python} ${pipeline} > ${_save_log_path} 2>&1"
eval ${pipeline_cmd}
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
sleep 10s
done
eval "${python_} -m paddle_serving_server.serve stop"
else
echo "Does not support hardware [${use_gpu}] other than CPU and GPU Currently!"
fi
done
}
# set cuda device
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env="export CUDA_VISIBLE_DEVICES=0"
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
set CUDA_VISIBLE_DEVICES
eval ${env}
echo "################### run test ###################"
export Count=0
IFS="|"
if [[ ${model_name} = "PPShiTu" ]]; then
func_serving_rec
else
func_serving_cls
fi