PaddleClas/ppcls/engine/train/train_fixmatch_ccssl.py

135 lines
4.9 KiB
Python

from __future__ import absolute_import, division, print_function
import time
from turtle import update
import paddle
from ppcls.engine.train.train_fixmatch import get_loss
from ppcls.engine.train.utils import update_loss, update_metric, log_info
from ppcls.utils import profiler
from paddle.nn import functional as F
import numpy as np
import paddle
def train_epoch_fixmatch_ccssl(engine, epoch_id, print_batch_step):
print(engine.model.state_dict().keys())
assert 1==0
tic = time.time()
if not hasattr(engine, 'train_dataloader_iter'):
engine.train_dataloader_iter = iter(engine.train_dataloader)
engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader)
temperture = engine.config['SSL'].get("T", 1)
threshold = engine.config['SSL'].get("threshold", 0.95)
assert engine.iter_per_epoch is not None, "Global.iter_per_epoch need to be set"
threshold = paddle.to_tensor(threshold)
for iter_id in range(engine.iter_per_epoch):
if iter_id >= engine.iter_per_epoch:
break
if iter_id == 5:
for key in engine.time_info:
engine.time_info[key].reset()
try:
label_data_batch = engine.train_dataloader_iter.next()
except Exception:
engine.train_dataloader_iter = iter(engine.train_dataloader)
label_data_batch = engine.train_dataloader_iter.next()
try:
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
except Exception:
engine.unlabel_train_dataloader_iter = iter(engine.unlabel_train_dataloader)
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
assert len(unlabel_data_batch) == 4
assert unlabel_data_batch[0].shape == unlabel_data_batch[1].shape == unlabel_data_batch[2].shape
engine.time_info['reader_cost'].update(time.time() - tic)
batch_size = label_data_batch[0].shape[0] \
+ unlabel_data_batch[0].shape[0] \
+ unlabel_data_batch[1].shape[0] \
+ unlabel_data_batch[2].shape[0]
engine.global_step += 1
inputs_x, targets_x = label_data_batch
inputs_w, inputs_s1, inputs_s2 = unlabel_data_batch[:3]
batch_size_label = inputs_x.shape[0]
inputs = paddle.concat([inputs_x, inputs_w, inputs_s1, inputs_s2], axis=0)
loss_dict, logits_label = get_loss(engine, inputs, batch_size_label,
temperture, threshold, targets_x,
)
loss = loss_dict['loss']
loss.backward()
for i in range(len(engine.optimizer)):
engine.optimizer[i].step()
for i in range(len(engine.lr_sch)):
if not getattr(engine.lr_sch[i], 'by_epoch', False):
engine.lr_sch[i].step()
for i in range(len(engine.optimizer)):
engine.optimizer[i].clear_grad()
if engine.ema:
engine.model_ema.update(engine.model)
update_metric(engine, logits_label, label_data_batch, batch_size)
update_loss(engine, loss_dict, batch_size)
engine.time_info['batch_cost'].update(time.time() - tic)
if iter_id % print_batch_step == 0:
log_info(engine, batch_size, epoch_id, iter_id)
tic = time.time()
for i in range(len(engine.lr_sch)):
if getattr(engine.lr_sch[i], 'by_epoch', False):
engine.lr_sch[i].step()
def get_loss(engine,
inputs,
batch_size_label,
temperture,
threshold,
targets_x,
**kwargs
):
out = engine.model(inputs)
logits, feats = out['logits'], out['features']
feat_w, feat_s1, feat_s2 = feats[batch_size_label:].chunk(3)
feat_x = feats[:batch_size_label]
logits_x = logits[:batch_size_label]
logits_w, logits_s1, logits_s2 = logits[batch_size_label:].chunk(3)
loss_dict_label = engine.train_loss_func(logits_x, targets_x)
probs_u_w = F.softmax(logits_w.detach() / temperture, axis=-1)
max_probs, p_targets_u_w = probs_u_w.max(axis=-1), probs_u_w.argmax(axis=-1)
mask = paddle.greater_equal(max_probs, threshold).astype('float')
feats = paddle.concat([feat_s1.unsqueeze(1), feat_s2.unsqueeze(1)], axis=1)
batch = {'logits_w': logits_w,
'logits_s1': logits_s1,
'p_targets_u_w': p_targets_u_w,
'mask': mask,
'max_probs': max_probs,
}
unlabel_loss = engine.unlabel_train_loss_func(feats, batch)
loss_dict = {}
for k, v in loss_dict_label.items():
if k != 'loss':
loss_dict[k] = v
for k, v in unlabel_loss.items():
if k != 'loss':
loss_dict[k] = v
loss_dict['loss'] = loss_dict_label['loss'] + unlabel_loss['loss']
return loss_dict, logits_x