57 lines
1.7 KiB
C++
57 lines
1.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void KunlunInfer(const std::string &model_dir, const std::string &image_file) {
|
|
auto model_file = model_dir + sep + "inference.pdmodel";
|
|
auto params_file = model_dir + sep + "inference.pdiparams";
|
|
auto config_file = model_dir + sep + "inference_cls.yaml";
|
|
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseKunlunXin();
|
|
|
|
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
|
model_file, params_file, config_file, option);
|
|
|
|
assert(model.Initialized());
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::ClassifyResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 3) {
|
|
std::cout << "Usage: infer_demo path/to/model path/to/image " << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
std::string model_dir = argv[1];
|
|
std::string test_image = argv[2];
|
|
KunlunInfer(model_dir, test_image);
|
|
return 0;
|
|
}
|