42 lines
1.1 KiB
Python
42 lines
1.1 KiB
Python
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of PaddleClas model.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--topk", type=int, default=1, help="Return topk results.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
|
||
option = fd.RuntimeOption()
|
||
option.use_kunlunxin()
|
||
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
|
||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||
model = fd.vision.classification.PaddleClasModel(
|
||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||
|
||
# 预测图片分类结果
|
||
im = cv2.imread(args.image)
|
||
result = model.predict(im, args.topk)
|
||
print(result)
|