PaddleClas/ppcls/modeling/architectures/googlenet.py

208 lines
6.5 KiB
Python

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math
__all__ = ['GoogLeNet']
def xavier(channels, filter_size, name):
stdv = (3.0 / (filter_size**2 * channels))**0.5
param_attr = ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + "_weights")
return param_attr
class ConvLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
def forward(self, inputs):
y = self._conv(inputs)
return y
class Inception(fluid.dygraph.Layer):
def __init__(self,
input_channels,
output_channels,
filter1,
filter3R,
filter3,
filter5R,
filter5,
proj,
name=None):
super(Inception, self).__init__()
self._conv1 = ConvLayer(
input_channels, filter1, 1, name="inception_" + name + "_1x1")
self._conv3r = ConvLayer(
input_channels,
filter3R,
1,
name="inception_" + name + "_3x3_reduce")
self._conv3 = ConvLayer(
filter3R, filter3, 3, name="inception_" + name + "_3x3")
self._conv5r = ConvLayer(
input_channels,
filter5R,
1,
name="inception_" + name + "_5x5_reduce")
self._conv5 = ConvLayer(
filter5R, filter5, 5, name="inception_" + name + "_5x5")
self._pool = Pool2D(
pool_size=3, pool_type="max", pool_stride=1, pool_padding=1)
self._convprj = ConvLayer(
input_channels, proj, 1, name="inception_" + name + "_3x3_proj")
def forward(self, inputs):
conv1 = self._conv1(inputs)
conv3r = self._conv3r(inputs)
conv3 = self._conv3(conv3r)
conv5r = self._conv5r(inputs)
conv5 = self._conv5(conv5r)
pool = self._pool(inputs)
convprj = self._convprj(pool)
cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
cat = fluid.layers.relu(cat)
return cat
class GoogleNetDY(fluid.dygraph.Layer):
def __init__(self, class_dim=1000):
super(GoogleNetDY, self).__init__()
self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")
self._ince3a = Inception(
192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
self._ince3b = Inception(
256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")
self._ince4a = Inception(
480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
self._ince4b = Inception(
512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
self._ince4c = Inception(
512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
self._ince4d = Inception(
512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
self._ince4e = Inception(
528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")
self._ince5a = Inception(
832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
self._ince5b = Inception(
832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")
self._pool_5 = Pool2D(pool_size=7, pool_type='avg', pool_stride=7)
self._drop = fluid.dygraph.Dropout(p=0.4)
self._fc_out = Linear(
1024,
class_dim,
param_attr=xavier(1024, 1, "out"),
bias_attr=ParamAttr(name="out_offset"),
act="softmax")
self._pool_o1 = Pool2D(pool_size=5, pool_stride=3, pool_type="avg")
self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
self._fc_o1 = Linear(
1152,
1024,
param_attr=xavier(2048, 1, "fc_o1"),
bias_attr=ParamAttr(name="fc_o1_offset"),
act="relu")
self._drop_o1 = fluid.dygraph.Dropout(p=0.7)
self._out1 = Linear(
1024,
class_dim,
param_attr=xavier(1024, 1, "out1"),
bias_attr=ParamAttr(name="out1_offset"),
act="softmax")
self._pool_o2 = Pool2D(pool_size=5, pool_stride=3, pool_type='avg')
self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
self._fc_o2 = Linear(
1152,
1024,
param_attr=xavier(2048, 1, "fc_o2"),
bias_attr=ParamAttr(name="fc_o2_offset"))
self._drop_o2 = fluid.dygraph.Dropout(p=0.7)
self._out2 = Linear(
1024,
class_dim,
param_attr=xavier(1024, 1, "out2"),
bias_attr=ParamAttr(name="out2_offset"))
def forward(self, inputs):
x = self._conv(inputs)
x = self._pool(x)
x = self._conv_1(x)
x = self._conv_2(x)
x = self._pool(x)
x = self._ince3a(x)
x = self._ince3b(x)
x = self._pool(x)
ince4a = self._ince4a(x)
x = self._ince4b(ince4a)
x = self._ince4c(x)
ince4d = self._ince4d(x)
x = self._ince4e(ince4d)
x = self._pool(x)
x = self._ince5a(x)
ince5b = self._ince5b(x)
x = self._pool_5(ince5b)
x = self._drop(x)
x = fluid.layers.squeeze(x, axes=[2, 3])
out = self._fc_out(x)
x = self._pool_o1(ince4a)
x = self._conv_o1(x)
x = fluid.layers.flatten(x)
x = self._fc_o1(x)
x = self._drop_o1(x)
out1 = self._out1(x)
x = self._pool_o2(ince4d)
x = self._conv_o2(x)
x = fluid.layers.flatten(x)
x = self._fc_o2(x)
x = self._drop_o2(x)
out2 = self._out2(x)
return [out, out1, out2]
def GoogLeNet(**args):
model = GoogleNetDY(**args)
return model