149 lines
5.4 KiB
Python
149 lines
5.4 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import errno
|
|
import os
|
|
import re
|
|
import shutil
|
|
import tempfile
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from ppcls.utils import logger
|
|
|
|
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
|
|
|
|
|
|
def _mkdir_if_not_exist(path):
|
|
"""
|
|
mkdir if not exists, ignore the exception when multiprocess mkdir together
|
|
"""
|
|
if not os.path.exists(path):
|
|
try:
|
|
os.makedirs(path)
|
|
except OSError as e:
|
|
if e.errno == errno.EEXIST and os.path.isdir(path):
|
|
logger.warning(
|
|
'be happy if some process has already created {}'.format(
|
|
path))
|
|
else:
|
|
raise OSError('Failed to mkdir {}'.format(path))
|
|
|
|
|
|
def load_dygraph_pretrain(model, path=None, load_static_weights=False):
|
|
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
|
|
raise ValueError("Model pretrain path {} does not "
|
|
"exists.".format(path))
|
|
if load_static_weights:
|
|
pre_state_dict = fluid.load_program_state(path)
|
|
param_state_dict = {}
|
|
model_dict = model.state_dict()
|
|
for key in model_dict.keys():
|
|
weight_name = model_dict[key].name
|
|
if weight_name in pre_state_dict.keys():
|
|
print('Load weight: {}, shape: {}'.format(
|
|
weight_name, pre_state_dict[weight_name].shape))
|
|
param_state_dict[key] = pre_state_dict[weight_name]
|
|
else:
|
|
param_state_dict[key] = model_dict[key]
|
|
model.set_dict(param_state_dict)
|
|
return
|
|
|
|
param_state_dict, optim_state_dict = fluid.load_dygraph(path)
|
|
model.set_dict(param_state_dict)
|
|
return
|
|
|
|
|
|
def load_distillation_model(model, pretrained_model, load_static_weights):
|
|
logger.info("In distillation mode, teacher model will be "
|
|
"loaded firstly before student model.")
|
|
assert len(pretrained_model
|
|
) == 2, "pretrained_model length should be 2 but got {}".format(
|
|
len(pretrained_model))
|
|
assert len(
|
|
load_static_weights
|
|
) == 2, "load_static_weights length should be 2 but got {}".format(
|
|
len(load_static_weights))
|
|
load_dygraph_pretrain(
|
|
model.teacher,
|
|
path=pretrained_model[0],
|
|
load_static_weights=load_static_weights[0])
|
|
logger.info(
|
|
logger.coloring("Finish initing teacher model from {}".format(
|
|
pretrained_model), "HEADER"))
|
|
load_dygraph_pretrain(
|
|
model.student,
|
|
path=pretrained_model[1],
|
|
load_static_weights=load_static_weights[1])
|
|
logger.info(
|
|
logger.coloring("Finish initing student model from {}".format(
|
|
pretrained_model), "HEADER"))
|
|
|
|
|
|
def init_model(config, net, optimizer=None):
|
|
"""
|
|
load model from checkpoint or pretrained_model
|
|
"""
|
|
checkpoints = config.get('checkpoints')
|
|
if checkpoints:
|
|
assert os.path.exists(checkpoints + ".pdparams"), \
|
|
"Given dir {}.pdparams not exist.".format(checkpoints)
|
|
assert os.path.exists(checkpoints + ".pdopt"), \
|
|
"Given dir {}.pdopt not exist.".format(checkpoints)
|
|
para_dict, opti_dict = fluid.dygraph.load_dygraph(checkpoints)
|
|
net.set_dict(para_dict)
|
|
optimizer.set_dict(opti_dict)
|
|
logger.info(
|
|
logger.coloring("Finish initing model from {}".format(checkpoints),
|
|
"HEADER"))
|
|
return
|
|
|
|
pretrained_model = config.get('pretrained_model')
|
|
load_static_weights = config.get('load_static_weights', False)
|
|
use_distillation = config.get('use_distillation', False)
|
|
if pretrained_model:
|
|
if isinstance(pretrained_model,
|
|
list): # load distillation pretrained model
|
|
if not isinstance(load_static_weights, list):
|
|
load_static_weights = [load_static_weights] * len(
|
|
pretrained_model)
|
|
load_distillation_model(net, pretrained_model, load_static_weights)
|
|
else: # common load
|
|
load_dygraph_pretrain(
|
|
net,
|
|
path=pretrained_model,
|
|
load_static_weights=load_static_weights)
|
|
logger.info(
|
|
logger.coloring("Finish initing model from {}".format(
|
|
pretrained_model), "HEADER"))
|
|
|
|
|
|
def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'):
|
|
"""
|
|
save model to the target path
|
|
"""
|
|
model_path = os.path.join(model_path, str(epoch_id))
|
|
_mkdir_if_not_exist(model_path)
|
|
model_prefix = os.path.join(model_path, prefix)
|
|
|
|
fluid.dygraph.save_dygraph(net.state_dict(), model_prefix)
|
|
fluid.dygraph.save_dygraph(optimizer.state_dict(), model_prefix)
|
|
logger.info(
|
|
logger.coloring("Already save model in {}".format(model_path),
|
|
"HEADER"))
|