75 lines
2.8 KiB
Python
75 lines
2.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
|
|
try:
|
|
from paddle_serving_server_gpu.web_service import WebService, Op
|
|
except ImportError:
|
|
from paddle_serving_server.web_service import WebService, Op
|
|
import logging
|
|
import numpy as np
|
|
import base64, cv2
|
|
|
|
|
|
class ImagenetOp(Op):
|
|
def init_op(self):
|
|
self.seq = Sequential([
|
|
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
|
|
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
|
|
True)
|
|
])
|
|
self.label_dict = {}
|
|
label_idx = 0
|
|
with open("imagenet.label") as fin:
|
|
for line in fin:
|
|
self.label_dict[label_idx] = line.strip()
|
|
label_idx += 1
|
|
|
|
def preprocess(self, input_dicts, data_id, log_id):
|
|
(_, input_dict), = input_dicts.items()
|
|
batch_size = len(input_dict.keys())
|
|
imgs = []
|
|
for key in input_dict.keys():
|
|
data = base64.b64decode(input_dict[key].encode('utf8'))
|
|
data = np.fromstring(data, np.uint8)
|
|
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
|
img = self.seq(im)
|
|
imgs.append(img[np.newaxis, :].copy())
|
|
input_imgs = np.concatenate(imgs, axis=0)
|
|
return {"inputs": input_imgs}, False, None, ""
|
|
|
|
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
|
|
score_list = fetch_dict["prediction"]
|
|
result = {"label": [], "prob": []}
|
|
for score in score_list:
|
|
score = score.tolist()
|
|
max_score = max(score)
|
|
result["label"].append(self.label_dict[score.index(max_score)]
|
|
.strip().replace(",", ""))
|
|
result["prob"].append(max_score)
|
|
result["label"] = str(result["label"])
|
|
result["prob"] = str(result["prob"])
|
|
return result, None, ""
|
|
|
|
|
|
class ImageService(WebService):
|
|
def get_pipeline_response(self, read_op):
|
|
image_op = ImagenetOp(name="imagenet", input_ops=[read_op])
|
|
return image_op
|
|
|
|
|
|
uci_service = ImageService(name="imagenet")
|
|
uci_service.prepare_pipeline_config("config.yml")
|
|
uci_service.run_service()
|