PaddleClas/ppcls/engine/evaluation/face_recognition.py

158 lines
6.1 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import platform
import paddle
import paddle.nn.functional as F
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger, all_gather
def face_recognition_eval(engine, epoch_id=0):
# reset metric on beginning of eval
if hasattr(engine.eval_metric_func, "reset"):
engine.eval_metric_func.reset()
output_info = dict()
# log time_info for each batch
time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
print_batch_step = engine.config["Global"]["print_batch_step"]
tic = time.time()
accum_samples = 0
total_samples = len(
engine.eval_dataloader.
dataset) if not engine.use_dali else engine.eval_dataloader.size
max_iter = len(engine.eval_dataloader) - 1 if platform.system(
) == "Windows" else len(engine.eval_dataloader)
flip_test = engine.config["Global"].get("flip_test", False)
feature_normalize = engine.config["Global"].get("feature_normalize", False)
for iter_id, batch in enumerate(engine.eval_dataloader):
if iter_id >= max_iter:
break
if iter_id == 5:
for key in time_info:
time_info[key].reset()
time_info["reader_cost"].update(time.time() - tic)
images_left, images_right, labels = [
paddle.to_tensor(x) for x in batch[:3]]
batch_remains = [paddle.to_tensor(x) for x in batch[3:]]
labels = labels.astype('int64')
batch_size = images_left.shape[0]
# flip images
if flip_test:
images_left = paddle.concat(
[images_left, paddle.flip(images_left, axis=-1)], 0)
images_right = paddle.concat(
[images_right, paddle.flip(images_right, axis=-1)], 0)
with engine.auto_cast(is_eval=True):
if engine.is_rec:
out_left = engine.model(images_left, labels.reshape([-1, 1]))
out_right = engine.model(images_right, labels.reshape([-1, 1]))
else:
out_left = engine.model(images_left)
out_right = engine.model(images_right)
# get features
if engine.config["Global"].get("retrieval_feature_from",
"features") == "features":
# use output from neck as feature
embeddings_left = out_left["features"]
embeddings_right = out_right["features"]
else:
# use output from backbone as feature
embeddings_left = out_left["backbone"]
embeddings_right = out_right["backbone"]
# normalize features
if feature_normalize:
embeddings_left = F.normalize(embeddings_left, p=2, axis=1)
embeddings_right = F.normalize(embeddings_right, p=2, axis=1)
# fuse features by sum up if flip_test is True
if flip_test:
embeddings_left = embeddings_left[:batch_size] + \
embeddings_left[batch_size:]
embeddings_right = embeddings_right[:batch_size] + \
embeddings_right[batch_size:]
# just for DistributedBatchSampler issue: repeat sampling
current_samples = batch_size * paddle.distributed.get_world_size()
accum_samples += current_samples
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
embeddings_left = all_gather(embeddings_left)
embeddings_right = all_gather(embeddings_right)
labels = all_gather(labels)
batch_remains = [all_gather(x) for x in batch_remains]
# discard redundant padding sample(s) in the last batch
if accum_samples > total_samples and not engine.use_dali:
rest_num = total_samples + current_samples - accum_samples
embeddings_left = embeddings_left[:rest_num]
embeddings_right = embeddings_right[:rest_num]
labels = labels[:rest_num]
batch_remains = [x[:rest_num] for x in batch_remains]
# calc metric
if engine.eval_metric_func is not None:
engine.eval_metric_func(embeddings_left, embeddings_right, labels,
*batch_remains)
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
time_msg = "s, ".join([
"{}: {:.5f}".format(key, time_info[key].avg)
for key in time_info
])
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
tic = time.time()
if engine.use_dali:
engine.eval_dataloader.reset()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.avg