PaddleClas/ppcls/modeling/architectures/resnext_vd.py

258 lines
8.1 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import math
__all__ = [
"ResNeXt", "ResNeXt50_vd_64x4d", "ResNeXt101_vd_64x4d",
"ResNeXt152_vd_64x4d", "ResNeXt50_vd_32x4d", "ResNeXt101_vd_32x4d",
"ResNeXt152_vd_32x4d"
]
class ResNeXt():
def __init__(self, layers=50, is_3x3=False, cardinality=64):
self.layers = layers
self.is_3x3 = is_3x3
self.cardinality = cardinality
def net(self, input, class_dim=1000):
is_3x3 = self.is_3x3
layers = self.layers
cardinality = self.cardinality
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters1 = [256, 512, 1024, 2048]
num_filters2 = [128, 256, 512, 1024]
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters1[block]
if cardinality == 64 else num_filters2[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
if_first=block == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc_weights'),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality, name,
if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
groups=cardinality,
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters if cardinality == 64 else num_filters * 2,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters if cardinality == 64 else num_filters * 2,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def ResNeXt50_vd_64x4d():
model = ResNeXt(layers=50, is_3x3=True)
return model
def ResNeXt50_vd_32x4d():
model = ResNeXt(layers=50, cardinality=32, is_3x3=True)
return model
def ResNeXt101_vd_64x4d():
model = ResNeXt(layers=101, is_3x3=True)
return model
def ResNeXt101_vd_32x4d():
model = ResNeXt(layers=101, cardinality=32, is_3x3=True)
return model
def ResNeXt152_vd_64x4d():
model = ResNeXt(layers=152, is_3x3=True)
return model
def ResNeXt152_vd_32x4d():
model = ResNeXt(layers=152, cardinality=32, is_3x3=True)
return model