PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py

308 lines
9.6 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
__all__ = [
'ShuffleNetV2_x0_25', 'ShuffleNetV2_x0_33', 'ShuffleNetV2_x0_5',
'ShuffleNetV2_x1_0', 'ShuffleNetV2_x1_5', 'ShuffleNetV2_x2_0',
'ShuffleNetV2'
]
class ShuffleNetV2():
def __init__(self, scale=1.0):
self.scale = scale
def net(self, input, class_dim=1000):
scale = self.scale
stage_repeats = [4, 8, 4]
if scale == 0.25:
stage_out_channels = [-1, 24, 24, 48, 96, 512]
elif scale == 0.33:
stage_out_channels = [-1, 24, 32, 64, 128, 512]
elif scale == 0.5:
stage_out_channels = [-1, 24, 48, 96, 192, 1024]
elif scale == 1.0:
stage_out_channels = [-1, 24, 116, 232, 464, 1024]
elif scale == 1.5:
stage_out_channels = [-1, 24, 176, 352, 704, 1024]
elif scale == 2.0:
stage_out_channels = [-1, 24, 224, 488, 976, 2048]
else:
raise NotImplementedError("This scale size:[" + str(scale) +
"] is not implemented!")
#conv1
input_channel = stage_out_channels[1]
conv1 = self.conv_bn_layer(
input=input,
filter_size=3,
num_filters=input_channel,
padding=1,
stride=2,
name='stage1_conv')
pool1 = fluid.layers.pool2d(
input=conv1,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
conv = pool1
# bottleneck sequences
for idxstage in range(len(stage_repeats)):
numrepeat = stage_repeats[idxstage]
output_channel = stage_out_channels[idxstage + 2]
for i in range(numrepeat):
if i == 0:
conv = self.inverted_residual_unit(
input=conv,
num_filters=output_channel,
stride=2,
benchmodel=2,
name=str(idxstage + 2) + '_' + str(i + 1))
else:
conv = self.inverted_residual_unit(
input=conv,
num_filters=output_channel,
stride=1,
benchmodel=1,
name=str(idxstage + 2) + '_' + str(i + 1))
conv_last = self.conv_bn_layer(
input=conv,
filter_size=1,
num_filters=stage_out_channels[-1],
padding=0,
stride=1,
name='conv5')
pool_last = fluid.layers.pool2d(
input=conv_last,
pool_size=7,
pool_stride=1,
pool_padding=0,
pool_type='avg')
output = fluid.layers.fc(input=pool_last,
size=class_dim,
param_attr=ParamAttr(
initializer=MSRA(), name='fc6_weights'),
bias_attr=ParamAttr(name='fc6_offset'))
return output
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
use_cudnn=True,
if_act=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(
initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
out = int((input.shape[2] - 1) / float(stride) + 1)
bn_name = name + '_bn'
if if_act:
return fluid.layers.batch_norm(
input=conv,
act='relu',
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
else:
return fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def channel_shuffle(self, x, groups):
batchsize, num_channels, height, width = x.shape[0], x.shape[
1], x.shape[2], x.shape[3]
channels_per_group = num_channels // groups
# reshape
x = fluid.layers.reshape(
x=x, shape=[batchsize, groups, channels_per_group, height, width])
x = fluid.layers.transpose(x=x, perm=[0, 2, 1, 3, 4])
# flatten
x = fluid.layers.reshape(
x=x, shape=[batchsize, num_channels, height, width])
return x
def inverted_residual_unit(self,
input,
num_filters,
stride,
benchmodel,
name=None):
assert stride in [1, 2], \
"supported stride are {} but your stride is {}".format([1,2], stride)
oup_inc = num_filters // 2
inp = input.shape[1]
if benchmodel == 1:
x1, x2 = fluid.layers.split(
input,
num_or_sections=[input.shape[1] // 2, input.shape[1] // 2],
dim=1)
conv_pw = self.conv_bn_layer(
input=x2,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name='stage_' + name + '_conv1')
conv_dw = self.conv_bn_layer(
input=conv_pw,
num_filters=oup_inc,
filter_size=3,
stride=stride,
padding=1,
num_groups=oup_inc,
if_act=False,
use_cudnn=False,
name='stage_' + name + '_conv2')
conv_linear = self.conv_bn_layer(
input=conv_dw,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name='stage_' + name + '_conv3')
out = fluid.layers.concat([x1, conv_linear], axis=1)
else:
#branch1
conv_dw_1 = self.conv_bn_layer(
input=input,
num_filters=inp,
filter_size=3,
stride=stride,
padding=1,
num_groups=inp,
if_act=False,
use_cudnn=False,
name='stage_' + name + '_conv4')
conv_linear_1 = self.conv_bn_layer(
input=conv_dw_1,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name='stage_' + name + '_conv5')
#branch2
conv_pw_2 = self.conv_bn_layer(
input=input,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name='stage_' + name + '_conv1')
conv_dw_2 = self.conv_bn_layer(
input=conv_pw_2,
num_filters=oup_inc,
filter_size=3,
stride=stride,
padding=1,
num_groups=oup_inc,
if_act=False,
use_cudnn=False,
name='stage_' + name + '_conv2')
conv_linear_2 = self.conv_bn_layer(
input=conv_dw_2,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name='stage_' + name + '_conv3')
out = fluid.layers.concat([conv_linear_1, conv_linear_2], axis=1)
return self.channel_shuffle(out, 2)
def ShuffleNetV2_x0_25():
model = ShuffleNetV2(scale=0.25)
return model
def ShuffleNetV2_x0_33():
model = ShuffleNetV2(scale=0.33)
return model
def ShuffleNetV2_x0_5():
model = ShuffleNetV2(scale=0.5)
return model
def ShuffleNetV2_x1_0():
model = ShuffleNetV2(scale=1.0)
return model
def ShuffleNetV2_x1_5():
model = ShuffleNetV2(scale=1.5)
return model
def ShuffleNetV2_x2_0():
model = ShuffleNetV2(scale=2.0)
return model