89 lines
3.3 KiB
Python
89 lines
3.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import numpy as np
|
|
|
|
from ppcls.data.preprocess import transform
|
|
from ppcls.utils import logger
|
|
|
|
from .common_dataset import CommonDataset
|
|
|
|
|
|
class CustomLabelDataset(CommonDataset):
|
|
"""CustomLabelDataset
|
|
|
|
Args:
|
|
image_root (str): image root, path to `ILSVRC2012`
|
|
sample_list_path (str): path to the file with samples listed.
|
|
transform_ops (list, optional): list of transform op(s). Defaults to None.
|
|
label_key (str, optional): Defaults to None.
|
|
delimiter (str, optional): delimiter. Defaults to None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
image_root,
|
|
sample_list_path,
|
|
transform_ops=None,
|
|
label_key=None,
|
|
delimiter=None):
|
|
self.delimiter = delimiter
|
|
super().__init__(image_root, sample_list_path, transform_ops)
|
|
if self._transform_ops is None and label_key is not None:
|
|
label_key = None
|
|
msg = "Unable to get label by label_key when transform_ops is None. The label_key has been set to None."
|
|
logger.warning(msg)
|
|
self.label_key = label_key
|
|
|
|
def _load_anno(self, seed=None):
|
|
assert os.path.exists(
|
|
self._cls_path), f"path {self._cls_path} does not exist."
|
|
assert os.path.exists(
|
|
self._img_root), f"path {self._img_root} does not exist."
|
|
self.images = []
|
|
|
|
with open(self._cls_path) as fd:
|
|
lines = fd.readlines()
|
|
|
|
if seed is not None:
|
|
np.random.RandomState(seed).shuffle(lines)
|
|
for line in lines:
|
|
line = line.strip()
|
|
if self.delimiter is not None:
|
|
line = line.split(self.delimiter)[0]
|
|
self.images.append(os.path.join(self._img_root, line))
|
|
assert os.path.exists(self.images[
|
|
-1]), f"path {self.images[-1]} does not exist."
|
|
|
|
def __getitem__(self, idx):
|
|
try:
|
|
with open(self.images[idx], 'rb') as f:
|
|
img = f.read()
|
|
if self._transform_ops:
|
|
processed_sample = transform({"img": img}, self._transform_ops)
|
|
img = processed_sample["img"].transpose((2, 0, 1))
|
|
if self.label_key is not None:
|
|
label = processed_sample[self.label_key]
|
|
sample = (img, label)
|
|
return sample
|
|
return (img)
|
|
|
|
except Exception as ex:
|
|
logger.error("Exception occured when parse line: {} with msg: {}".
|
|
format(self.images[idx], ex))
|
|
rnd_idx = np.random.randint(self.__len__())
|
|
return self.__getitem__(rnd_idx)
|