PaddleClas/ppcls/arch/backbone/model_zoo/strongbaseline_attr.py

99 lines
3.5 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url, get_weights_path_from_url
from ..legendary_models.resnet import ResNet50
MODEL_URLS = {"StrongBaselineAttr": "strongbaseline_attr_clas", }
__all__ = list(MODEL_URLS.keys())
class StrongBaselinePAR(nn.Layer):
def __init__(
self,
**config, ):
"""
A strong baseline for Pedestrian Attribute Recognition, see https://arxiv.org/abs/2107.03576
Args:
backbone (object): backbone instance
classifier (object): classifier instance
loss (object): loss instance
"""
super(StrongBaselinePAR, self).__init__()
backbone_config = config["Backbone"]
backbone_name = backbone_config.pop("name")
self.backbone = eval(backbone_name)(**backbone_config)
def forward(self, x):
fc_feat = self.backbone(x)
output = F.sigmoid(fc_feat)
return output
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def load_pretrained(model, local_weight_path):
# local_weight_path = get_weights_path_from_url(model_url).replace(
# ".pdparams", "")
param_state_dict = paddle.load(local_weight_path + ".pdparams")
model_dict = model.state_dict()
model_dict_keys = list(model_dict.keys())
param_state_dict_keys = list(param_state_dict.keys())
# assert(len(model_dict_keys) == len(param_state_dict_keys)), "{} == {}".format(len(model_dict_keys), len(param_state_dict_keys))
for idx in range(len(model_dict.keys())):
model_key = model_dict_keys[idx]
param_key = param_state_dict_keys[idx]
if model_dict[model_key].shape == param_state_dict[param_key].shape:
model_dict[model_key] = param_state_dict[param_key]
else:
print("miss match idx: {} weights: {} vs {}; {} vs {}".format(
idx, model_key, param_key, model_dict[
model_key].shape, param_state_dict[param_key].shape))
model.set_dict(model_dict)
def StrongBaselineAttr(pretrained=True, use_ssld=False, **kwargs):
model = StrongBaselinePAR(**kwargs)
_load_pretrained(MODEL_URLS["StrongBaselineAttr"], model, None, None)
return model