158 lines
6.1 KiB
Python
158 lines
6.1 KiB
Python
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
|
|
class TripletLossV2(nn.Layer):
|
|
"""Triplet loss with hard positive/negative mining.
|
|
paper : [Facenet: A unified embedding for face recognition and clustering](https://arxiv.org/pdf/1503.03832.pdf)
|
|
code reference: https://github.com/okzhili/Cartoon-face-recognition/blob/master/loss/triplet_loss.py
|
|
Args:
|
|
margin (float): margin for triplet.
|
|
"""
|
|
|
|
def __init__(self,
|
|
margin=0.5,
|
|
normalize_feature=True,
|
|
feat_from='backbone'):
|
|
super(TripletLossV2, self).__init__()
|
|
self.margin = margin
|
|
self.feat_from = feat_from
|
|
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
|
|
self.normalize_feature = normalize_feature
|
|
|
|
def forward(self, input, target):
|
|
"""
|
|
Args:
|
|
inputs: feature matrix with shape (batch_size, feat_dim)
|
|
target: ground truth labels with shape (num_classes)
|
|
"""
|
|
inputs = input[self.feat_from]
|
|
|
|
if self.normalize_feature:
|
|
inputs = 1. * inputs / (paddle.expand_as(
|
|
paddle.norm(
|
|
inputs, p=2, axis=-1, keepdim=True), inputs) + 1e-12)
|
|
|
|
bs = inputs.shape[0]
|
|
|
|
# compute distance
|
|
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
|
|
dist = dist + dist.t()
|
|
dist = paddle.addmm(
|
|
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
|
|
dist = paddle.clip(dist, min=1e-12).sqrt()
|
|
|
|
# hard negative mining
|
|
is_pos = paddle.expand(target, (
|
|
bs, bs)).equal(paddle.expand(target, (bs, bs)).t())
|
|
is_neg = paddle.expand(target, (
|
|
bs, bs)).not_equal(paddle.expand(target, (bs, bs)).t())
|
|
|
|
# `dist_ap` means distance(anchor, positive)
|
|
## both `dist_ap` and `relative_p_inds` with shape [N, 1]
|
|
'''
|
|
dist_ap, relative_p_inds = paddle.max(
|
|
paddle.reshape(dist[is_pos], (bs, -1)), axis=1, keepdim=True)
|
|
# `dist_an` means distance(anchor, negative)
|
|
# both `dist_an` and `relative_n_inds` with shape [N, 1]
|
|
dist_an, relative_n_inds = paddle.min(
|
|
paddle.reshape(dist[is_neg], (bs, -1)), axis=1, keepdim=True)
|
|
'''
|
|
dist_ap = paddle.max(paddle.reshape(
|
|
paddle.masked_select(dist, is_pos), (bs, -1)),
|
|
axis=1,
|
|
keepdim=True)
|
|
# `dist_an` means distance(anchor, negative)
|
|
# both `dist_an` and `relative_n_inds` with shape [N, 1]
|
|
dist_an = paddle.min(paddle.reshape(
|
|
paddle.masked_select(dist, is_neg), (bs, -1)),
|
|
axis=1,
|
|
keepdim=True)
|
|
# shape [N]
|
|
dist_ap = paddle.squeeze(dist_ap, axis=1)
|
|
dist_an = paddle.squeeze(dist_an, axis=1)
|
|
|
|
# Compute ranking hinge loss
|
|
y = paddle.ones_like(dist_an)
|
|
loss = self.ranking_loss(dist_an, dist_ap, y)
|
|
return {"TripletLossV2": loss}
|
|
|
|
|
|
class TripletLoss(nn.Layer):
|
|
"""Triplet loss with hard positive/negative mining.
|
|
Reference:
|
|
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
|
|
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
|
|
Args:
|
|
margin (float): margin for triplet.
|
|
"""
|
|
|
|
def __init__(self, margin=1.0):
|
|
super(TripletLoss, self).__init__()
|
|
self.margin = margin
|
|
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
|
|
|
|
def forward(self, input, target):
|
|
"""
|
|
Args:
|
|
inputs: feature matrix with shape (batch_size, feat_dim)
|
|
target: ground truth labels with shape (num_classes)
|
|
"""
|
|
inputs = input["features"]
|
|
|
|
bs = inputs.shape[0]
|
|
# Compute pairwise distance, replace by the official when merged
|
|
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
|
|
dist = dist + dist.t()
|
|
dist = paddle.addmm(
|
|
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
|
|
dist = paddle.clip(dist, min=1e-12).sqrt()
|
|
|
|
mask = paddle.equal(
|
|
target.expand([bs, bs]), target.expand([bs, bs]).t())
|
|
mask_numpy_idx = mask.numpy()
|
|
dist_ap, dist_an = [], []
|
|
for i in range(bs):
|
|
# dist_ap_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i]].max(),dtype='float64').unsqueeze(0)
|
|
# dist_ap_i.stop_gradient = False
|
|
# dist_ap.append(dist_ap_i)
|
|
dist_ap.append(
|
|
max([
|
|
dist[i][j] if mask_numpy_idx[i][j] == True else float(
|
|
"-inf") for j in range(bs)
|
|
]).unsqueeze(0))
|
|
# dist_an_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i] == False].min(), dtype='float64').unsqueeze(0)
|
|
# dist_an_i.stop_gradient = False
|
|
# dist_an.append(dist_an_i)
|
|
dist_an.append(
|
|
min([
|
|
dist[i][k] if mask_numpy_idx[i][k] == False else float(
|
|
"inf") for k in range(bs)
|
|
]).unsqueeze(0))
|
|
|
|
dist_ap = paddle.concat(dist_ap, axis=0)
|
|
dist_an = paddle.concat(dist_an, axis=0)
|
|
|
|
# Compute ranking hinge loss
|
|
y = paddle.ones_like(dist_an)
|
|
loss = self.ranking_loss(dist_an, dist_ap, y)
|
|
return {"TripletLoss": loss}
|