PaddleClas/ppcls/loss/triplet.py

158 lines
6.1 KiB
Python

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
class TripletLossV2(nn.Layer):
"""Triplet loss with hard positive/negative mining.
paper : [Facenet: A unified embedding for face recognition and clustering](https://arxiv.org/pdf/1503.03832.pdf)
code reference: https://github.com/okzhili/Cartoon-face-recognition/blob/master/loss/triplet_loss.py
Args:
margin (float): margin for triplet.
"""
def __init__(self,
margin=0.5,
normalize_feature=True,
feat_from='backbone'):
super(TripletLossV2, self).__init__()
self.margin = margin
self.feat_from = feat_from
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
self.normalize_feature = normalize_feature
def forward(self, input, target):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
target: ground truth labels with shape (num_classes)
"""
inputs = input[self.feat_from]
if self.normalize_feature:
inputs = 1. * inputs / (paddle.expand_as(
paddle.norm(
inputs, p=2, axis=-1, keepdim=True), inputs) + 1e-12)
bs = inputs.shape[0]
# compute distance
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
dist = dist + dist.t()
dist = paddle.addmm(
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
dist = paddle.clip(dist, min=1e-12).sqrt()
# hard negative mining
is_pos = paddle.expand(target, (
bs, bs)).equal(paddle.expand(target, (bs, bs)).t())
is_neg = paddle.expand(target, (
bs, bs)).not_equal(paddle.expand(target, (bs, bs)).t())
# `dist_ap` means distance(anchor, positive)
## both `dist_ap` and `relative_p_inds` with shape [N, 1]
'''
dist_ap, relative_p_inds = paddle.max(
paddle.reshape(dist[is_pos], (bs, -1)), axis=1, keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an, relative_n_inds = paddle.min(
paddle.reshape(dist[is_neg], (bs, -1)), axis=1, keepdim=True)
'''
dist_ap = paddle.max(paddle.reshape(
paddle.masked_select(dist, is_pos), (bs, -1)),
axis=1,
keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an = paddle.min(paddle.reshape(
paddle.masked_select(dist, is_neg), (bs, -1)),
axis=1,
keepdim=True)
# shape [N]
dist_ap = paddle.squeeze(dist_ap, axis=1)
dist_an = paddle.squeeze(dist_an, axis=1)
# Compute ranking hinge loss
y = paddle.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
return {"TripletLossV2": loss}
class TripletLoss(nn.Layer):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
Args:
margin (float): margin for triplet.
"""
def __init__(self, margin=1.0):
super(TripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = paddle.nn.loss.MarginRankingLoss(margin=margin)
def forward(self, input, target):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
target: ground truth labels with shape (num_classes)
"""
inputs = input["features"]
bs = inputs.shape[0]
# Compute pairwise distance, replace by the official when merged
dist = paddle.pow(inputs, 2).sum(axis=1, keepdim=True).expand([bs, bs])
dist = dist + dist.t()
dist = paddle.addmm(
input=dist, x=inputs, y=inputs.t(), alpha=-2.0, beta=1.0)
dist = paddle.clip(dist, min=1e-12).sqrt()
mask = paddle.equal(
target.expand([bs, bs]), target.expand([bs, bs]).t())
mask_numpy_idx = mask.numpy()
dist_ap, dist_an = [], []
for i in range(bs):
# dist_ap_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i]].max(),dtype='float64').unsqueeze(0)
# dist_ap_i.stop_gradient = False
# dist_ap.append(dist_ap_i)
dist_ap.append(
max([
dist[i][j] if mask_numpy_idx[i][j] == True else float(
"-inf") for j in range(bs)
]).unsqueeze(0))
# dist_an_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i] == False].min(), dtype='float64').unsqueeze(0)
# dist_an_i.stop_gradient = False
# dist_an.append(dist_an_i)
dist_an.append(
min([
dist[i][k] if mask_numpy_idx[i][k] == False else float(
"inf") for k in range(bs)
]).unsqueeze(0))
dist_ap = paddle.concat(dist_ap, axis=0)
dist_an = paddle.concat(dist_an, axis=0)
# Compute ranking hinge loss
y = paddle.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
return {"TripletLoss": loss}