PaddleClas/ppcls/utils/save_load.py

202 lines
7.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import paddle
from . import logger
from .download import get_weights_path_from_url
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
def load_dygraph_pretrain(model, path=None):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {}.pdparams does not "
"exists.".format(path))
param_state_dict = paddle.load(path + ".pdparams")
if isinstance(model, list):
for m in model:
if hasattr(m, 'set_dict'):
m.set_dict(param_state_dict)
else:
model.set_dict(param_state_dict)
logger.info("Finish load pretrained model from {}".format(path))
return
def load_dygraph_pretrain_from_url(model,
pretrained_url,
use_ssld=False,
use_imagenet22k_pretrained=False,
use_imagenet22kto1k_pretrained=False):
if use_ssld:
pretrained_url = pretrained_url.replace("_pretrained",
"_ssld_pretrained")
if use_imagenet22k_pretrained:
pretrained_url = pretrained_url.replace("_pretrained",
"_22k_pretrained")
if use_imagenet22kto1k_pretrained:
pretrained_url = pretrained_url.replace("_pretrained",
"_22kto1k_pretrained")
local_weight_path = get_weights_path_from_url(pretrained_url).replace(
".pdparams", "")
load_dygraph_pretrain(model, path=local_weight_path)
return
def load_distillation_model(model, pretrained_model):
logger.info("In distillation mode, teacher model will be "
"loaded firstly before student model.")
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
teacher = model.teacher if hasattr(model,
"teacher") else model._layers.teacher
student = model.student if hasattr(model,
"student") else model._layers.student
load_dygraph_pretrain(teacher, path=pretrained_model[0])
logger.info("Finish initing teacher model from {}".format(
pretrained_model))
# load student model
if len(pretrained_model) >= 2:
load_dygraph_pretrain(student, path=pretrained_model[1])
logger.info("Finish initing student model from {}".format(
pretrained_model))
def init_model(config,
net,
optimizer=None,
loss: paddle.nn.Layer=None,
model_ema=None):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints and optimizer is not None:
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
# load state dict
opti_dict = paddle.load(checkpoints + ".pdopt")
para_dict = paddle.load(checkpoints + ".pdparams")
metric_dict = paddle.load(checkpoints + ".pdstates")
# set state dict
net.set_state_dict(para_dict)
loss.set_state_dict(para_dict)
for i in range(len(optimizer)):
optimizer[i].set_state_dict(opti_dict[i] if isinstance(
opti_dict, list) else opti_dict)
if model_ema is not None:
assert os.path.exists(checkpoints + ".ema.pdparams"), \
"Given dir {}.ema.pdparams not exist.".format(checkpoints)
para_ema_dict = paddle.load(checkpoints + ".ema.pdparams")
model_ema.module.set_state_dict(para_ema_dict)
logger.info("Finish load checkpoints from {}".format(checkpoints))
return metric_dict
pretrained_model = config.get('pretrained_model')
use_distillation = config.get('use_distillation', False)
if pretrained_model:
if use_distillation:
load_distillation_model(net, pretrained_model)
else: # common load
load_dygraph_pretrain(net, path=pretrained_model)
logger.info("Finish load pretrained model from {}".format(
pretrained_model))
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def _extract_student_weights(all_params, student_prefix="Student."):
s_params = {
key[len(student_prefix):]: all_params[key]
for key in all_params if student_prefix in key
}
return s_params
class ModelSaver(object):
def __init__(self,
engine,
net_name="model",
loss_name="train_loss_func",
opt_name="optimizer",
model_ema_name="model_ema"):
# net, loss, opt, model_ema, output_dir,
self.engine = engine
self.net_name = net_name
self.loss_name = loss_name
self.opt_name = opt_name
self.model_ema_name = model_ema_name
arch_name = engine.config["Arch"]["name"]
self.output_dir = os.path.join(engine.output_dir, arch_name)
_mkdir_if_not_exist(self.output_dir)
def save(self, metric_info, prefix='ppcls', save_student_model=False):
if paddle.distributed.get_rank() != 0:
return
save_dir = os.path.join(self.output_dir, prefix)
params_state_dict = getattr(self.engine, self.net_name).state_dict()
loss = getattr(self.engine, self.loss_name)
if loss is not None:
loss_state_dict = loss.state_dict()
keys_inter = set(params_state_dict.keys()) & set(
loss_state_dict.keys())
assert len(keys_inter) == 0, \
f"keys in model and loss state_dict must be unique, but got intersection {keys_inter}"
params_state_dict.update(loss_state_dict)
if save_student_model:
s_params = _extract_student_weights(params_state_dict)
if len(s_params) > 0:
paddle.save(s_params, save_dir + "_student.pdparams")
paddle.save(params_state_dict, save_dir + ".pdparams")
model_ema = getattr(self.engine, self.model_ema_name)
if model_ema is not None:
paddle.save(model_ema.module.state_dict(),
save_dir + ".ema.pdparams")
optimizer = getattr(self.engine, self.opt_name)
paddle.save([opt.state_dict() for opt in optimizer],
save_dir + ".pdopt")
paddle.save(metric_info, save_dir + ".pdstates")
logger.info("Already save model in {}".format(save_dir))