PaddleClas/ppcls/arch/gears/metabnneck.py

123 lines
4.5 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from collections import defaultdict
import copy
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ..utils import get_param_attr_dict
class MetaBN1D(nn.BatchNorm1D):
def forward(self, inputs, opt={}):
mode = opt.get("bn_mode", "general") if self.training else "eval"
if mode == "general": # update, but not apply running_mean/var
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, self.training,
self._momentum, self._epsilon)
elif mode == "hold": # not update, not apply running_mean/var
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=0),
paddle.var(inputs, axis=0),
self.weight,
self.bias,
self.training,
self._momentum,
self._epsilon)
elif mode == "eval": # fix and apply running_mean/var,
if self._mean is None:
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=0),
paddle.var(inputs, axis=0),
self.weight,
self.bias,
True,
self._momentum,
self._epsilon)
else:
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, False,
self._momentum, self._epsilon)
return result
class MetaBNNeck(nn.Layer):
def __init__(self, num_features, **kwargs):
super(MetaBNNeck, self).__init__()
weight_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(value=1.0))
bias_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(value=0.0),
trainable=False)
if 'weight_attr' in kwargs:
weight_attr = get_param_attr_dict(kwargs['weight_attr'])
bias_attr = None
if 'bias_attr' in kwargs:
bias_attr = get_param_attr_dict(kwargs['bias_attr'])
use_global_stats = None
if 'use_global_stats' in kwargs:
use_global_stats = get_param_attr_dict(kwargs['use_global_stats'])
self.feat_bn = MetaBN1D(
num_features,
momentum=0.9,
epsilon=1e-05,
weight_attr=weight_attr,
bias_attr=bias_attr,
use_global_stats=use_global_stats)
self.flatten = nn.Flatten()
self.opt = {}
def forward(self, x):
x = self.flatten(x)
x = self.feat_bn(x, self.opt)
return x
def reset_opt(self):
self.opt = defaultdict()
def setup_opt(self, opt):
"""
Arg:
opt (dict): Optional setting to change the behavior of MetaBIN during training.
It includes three settings which are `enable_inside_update`, `lr_gate` and `bn_mode`.
"""
self.check_opt(opt)
self.opt = copy.deepcopy(opt)
@classmethod
def check_opt(cls, opt):
assert isinstance(opt, dict), \
TypeError('Got the wrong type of `opt`. Please use `dict` type.')
if opt.get('enable_inside_update', False) and 'lr_gate' not in opt:
raise RuntimeError('Missing `lr_gate` in opt.')
assert isinstance(opt.get('lr_gate', 1.0), float), \
TypeError('Got the wrong type of `lr_gate`. Please use `float` type.')
assert isinstance(opt.get('enable_inside_update', True), bool), \
TypeError('Got the wrong type of `enable_inside_update`. Please use `bool` type.')
assert opt.get('bn_mode', "general") in ["general", "hold", "eval"], \
TypeError('Got the wrong value of `bn_mode`.')