PaddleClas/ppcls/data/dataloader/imagenet_dataset.py

75 lines
2.9 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import os
from .common_dataset import CommonDataset
class ImageNetDataset(CommonDataset):
"""ImageNetDataset
Args:
image_root (str): image root, path to `ILSVRC2012`
cls_label_path (str): path to annotation file `train_list.txt` or `val_list.txt`
transform_ops (list, optional): list of transform op(s). Defaults to None.
delimiter (str, optional): delimiter. Defaults to None.
relabel (bool, optional): whether do relabel when original label do not starts from 0 or are discontinuous. Defaults to False.
"""
def __init__(self,
image_root,
cls_label_path,
transform_ops=None,
delimiter=None,
relabel=False):
self.delimiter = delimiter if delimiter is not None else " "
self.relabel = relabel
super(ImageNetDataset, self).__init__(image_root, cls_label_path,
transform_ops)
def _load_anno(self, seed=None):
assert os.path.exists(
self._cls_path), f"path {self._cls_path} does not exist."
assert os.path.exists(
self._img_root), f"path {self._img_root} does not exist."
self.images = []
self.labels = []
with open(self._cls_path) as fd:
lines = fd.readlines()
if self.relabel:
label_set = set()
for line in lines:
line = line.strip().split(self.delimiter)
label_set.add(np.int64(line[1]))
label_map = {
oldlabel: newlabel
for newlabel, oldlabel in enumerate(label_set)
}
if seed is not None:
np.random.RandomState(seed).shuffle(lines)
for line in lines:
line = line.strip().split(self.delimiter)
self.images.append(os.path.join(self._img_root, line[0]))
if self.relabel:
self.labels.append(label_map[np.int64(line[1])])
else:
self.labels.append(np.int64(line[1]))
assert os.path.exists(self.images[
-1]), f"path {self.images[-1]} does not exist."