PaddleClas/ppcls/configs/PULC/multilingual/PPLCNet_x1_0_distillation.yaml

164 lines
3.7 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
use_dali: False
use_sync_bn: True
# model architecture
Arch:
name: "DistillationModel"
class_num: &class_num 10
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- True
- False
models:
- Teacher:
name: ResNet101_vd
class_num: *class_num
- Student:
name: PPLCNet_x1_0
class_num: *class_num
pretrained: True
use_ssld: True
stride_list: [2, [2, 1], [2, 1], [2, 1], [2, 1]]
lr_mult_list : [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
infer_model_name: "Student"
# loss function config for traing/eval process
Loss:
Train:
- DistillationDMLLoss:
weight: 1.0
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00003
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/multilingual/
cls_label_path: ./dataset/multilingual/train_list_for_distill.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
prob: 1.0
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 1.0
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/multilingual/
cls_label_path: ./dataset/multilingual/test_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: deploy/images/PULC/multilingual/word_35404.png
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [160, 80]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 2
class_id_map_file: dataset/multilingual/label_list.txt
Metric:
Train:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 2]
Eval:
- TopkAcc:
topk: [1, 2]