PaddleClas/tools/eval.py

79 lines
2.4 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.distributed import ParallelEnv
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppcls.utils import logger
from ppcls.utils.save_load import init_model
from ppcls.utils.config import get_config
from ppcls.data import Reader
import program
def parse_args():
parser = argparse.ArgumentParser("PaddleClas eval script")
parser.add_argument(
'-c',
'--config',
type=str,
default='./configs/eval.yaml',
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args, return_dict={}):
config = get_config(args.config, overrides=args.override, show=True)
config.mode = "valid"
# assign place
use_gpu = config.get("use_gpu", True)
place = 'gpu:{}'.format(ParallelEnv().dev_id) if use_gpu else 'cpu'
place = paddle.set_device(place)
use_data_parallel = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) != 1
config["use_data_parallel"] = use_data_parallel
net = program.create_model(config.ARCHITECTURE, config.classes_num)
if config["use_data_parallel"]:
strategy = paddle.distributed.init_parallel_env()
net = paddle.DataParallel(net, strategy)
init_model(config, net, optimizer=None)
valid_dataloader = Reader(config, 'valid', places=place)()
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None, None, 0,
'valid')
return_dict["top1_acc"] = top1_acc
return top1_acc
if __name__ == '__main__':
args = parse_args()
main(args)