PaddleClas/tools/infer/predict.py

118 lines
3.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.insert(0, ".")
import tools.infer.utils as utils
import numpy as np
import cv2
import time
from paddle.inference import Config
from paddle.inference import create_predictor
def create_paddle_predictor(args):
config = Config(args.model_file, args.params_file)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=Config.PrecisionType.Half
if args.use_fp16 else Config.PrecisionType.Float32,
max_batch_size=args.batch_size)
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
return predictor
def main(args):
if not args.enable_benchmark:
assert args.batch_size == 1
assert args.use_fp16 is False
else:
assert args.use_gpu is True
assert args.model_name is not None
# HALF precission predict only work when using tensorrt
if args.use_fp16 is True:
assert args.use_tensorrt is True
predictor = create_paddle_predictor(args)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_handle(input_names[0])
output_names = predictor.get_output_names()
output_tensor = predictor.get_output_handle(output_names[0])
test_num = 500
test_time = 0.0
if not args.enable_benchmark:
# for PaddleHubServing
if args.hubserving:
img = args.image_file
# for predict only
else:
img = cv2.imread(args.image_file)[:, :, ::-1]
assert img is not None, "Error in loading image: {}".format(
args.image_file)
inputs = utils.preprocess(img, args)
inputs = np.expand_dims(
inputs, axis=0).repeat(
args.batch_size, axis=0).copy()
input_tensor.copy_from_cpu(inputs)
predictor.run()
output = output_tensor.copy_to_cpu()
return utils.postprocess(output, args)
else:
for i in range(0, test_num + 10):
inputs = np.random.rand(args.batch_size, 3, 224,
224).astype(np.float32)
start_time = time.time()
input_tensor.copy_from_cpu(inputs)
predictor.run()
output = output_tensor.copy_to_cpu()
output = output.flatten()
if i >= 10:
test_time += time.time() - start_time
time.sleep(0.01) # sleep for T4 GPU
fp_message = "FP16" if args.use_fp16 else "FP32"
trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt"
print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format(
args.model_name, trt_msg, fp_message, args.batch_size, 1000 *
test_time / test_num))
if __name__ == "__main__":
args = utils.parse_args()
classes, scores = main(args)
print("Current image file: {}".format(args.image_file))
print("\ttop-1 class: {0}".format(classes[0]))
print("\ttop-1 score: {0}".format(scores[0]))