118 lines
3.8 KiB
Python
118 lines
3.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
sys.path.insert(0, ".")
|
|
import tools.infer.utils as utils
|
|
import numpy as np
|
|
import cv2
|
|
import time
|
|
|
|
from paddle.inference import Config
|
|
from paddle.inference import create_predictor
|
|
|
|
|
|
def create_paddle_predictor(args):
|
|
config = Config(args.model_file, args.params_file)
|
|
|
|
if args.use_gpu:
|
|
config.enable_use_gpu(args.gpu_mem, 0)
|
|
else:
|
|
config.disable_gpu()
|
|
|
|
config.disable_glog_info()
|
|
config.switch_ir_optim(args.ir_optim) # default true
|
|
if args.use_tensorrt:
|
|
config.enable_tensorrt_engine(
|
|
precision_mode=Config.PrecisionType.Half
|
|
if args.use_fp16 else Config.PrecisionType.Float32,
|
|
max_batch_size=args.batch_size)
|
|
|
|
config.enable_memory_optim()
|
|
# use zero copy
|
|
config.switch_use_feed_fetch_ops(False)
|
|
predictor = create_predictor(config)
|
|
|
|
return predictor
|
|
|
|
|
|
def main(args):
|
|
if not args.enable_benchmark:
|
|
assert args.batch_size == 1
|
|
assert args.use_fp16 is False
|
|
else:
|
|
assert args.use_gpu is True
|
|
assert args.model_name is not None
|
|
# HALF precission predict only work when using tensorrt
|
|
if args.use_fp16 is True:
|
|
assert args.use_tensorrt is True
|
|
|
|
predictor = create_paddle_predictor(args)
|
|
|
|
input_names = predictor.get_input_names()
|
|
input_tensor = predictor.get_input_handle(input_names[0])
|
|
|
|
output_names = predictor.get_output_names()
|
|
output_tensor = predictor.get_output_handle(output_names[0])
|
|
|
|
test_num = 500
|
|
test_time = 0.0
|
|
if not args.enable_benchmark:
|
|
# for PaddleHubServing
|
|
if args.hubserving:
|
|
img = args.image_file
|
|
# for predict only
|
|
else:
|
|
img = cv2.imread(args.image_file)[:, :, ::-1]
|
|
assert img is not None, "Error in loading image: {}".format(
|
|
args.image_file)
|
|
inputs = utils.preprocess(img, args)
|
|
inputs = np.expand_dims(
|
|
inputs, axis=0).repeat(
|
|
args.batch_size, axis=0).copy()
|
|
input_tensor.copy_from_cpu(inputs)
|
|
|
|
predictor.run()
|
|
|
|
output = output_tensor.copy_to_cpu()
|
|
return utils.postprocess(output, args)
|
|
else:
|
|
for i in range(0, test_num + 10):
|
|
inputs = np.random.rand(args.batch_size, 3, 224,
|
|
224).astype(np.float32)
|
|
start_time = time.time()
|
|
input_tensor.copy_from_cpu(inputs)
|
|
|
|
predictor.run()
|
|
|
|
output = output_tensor.copy_to_cpu()
|
|
output = output.flatten()
|
|
if i >= 10:
|
|
test_time += time.time() - start_time
|
|
time.sleep(0.01) # sleep for T4 GPU
|
|
|
|
fp_message = "FP16" if args.use_fp16 else "FP32"
|
|
trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt"
|
|
print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format(
|
|
args.model_name, trt_msg, fp_message, args.batch_size, 1000 *
|
|
test_time / test_num))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = utils.parse_args()
|
|
classes, scores = main(args)
|
|
print("Current image file: {}".format(args.image_file))
|
|
print("\ttop-1 class: {0}".format(classes[0]))
|
|
print("\ttop-1 score: {0}".format(scores[0]))
|