PaddleClas/ppcls/data/postprocess/attr_rec.py

218 lines
8.2 KiB
Python

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import paddle
import paddle.nn.functional as F
class VehicleAttribute(object):
def __init__(self, color_threshold=0.5, type_threshold=0.5):
self.color_threshold = color_threshold
self.type_threshold = type_threshold
self.color_list = [
"yellow", "orange", "green", "gray", "red", "blue", "white",
"golden", "brown", "black"
]
self.type_list = [
"sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus",
"truck", "estate"
]
def __call__(self, x, file_names=None):
if isinstance(x, dict):
x = x['logits']
assert isinstance(x, paddle.Tensor)
if file_names is not None:
assert x.shape[0] == len(file_names)
x = F.sigmoid(x).numpy()
# postprocess output of predictor
batch_res = []
for idx, res in enumerate(x):
res = res.tolist()
label_res = []
color_idx = np.argmax(res[:10])
type_idx = np.argmax(res[10:])
print(color_idx, type_idx)
if res[color_idx] >= self.color_threshold:
color_info = f"Color: ({self.color_list[color_idx]}, prob: {res[color_idx]})"
else:
color_info = "Color unknown"
if res[type_idx + 10] >= self.type_threshold:
type_info = f"Type: ({self.type_list[type_idx]}, prob: {res[type_idx + 10]})"
else:
type_info = "Type unknown"
label_res = f"{color_info}, {type_info}"
threshold_list = [self.color_threshold
] * 10 + [self.type_threshold] * 9
pred_res = (np.array(res) > np.array(threshold_list)
).astype(np.int8).tolist()
batch_res.append({
"attr": label_res,
"pred": pred_res,
"file_name": file_names[idx]
})
return batch_res
class PersonAttribute(object):
def __init__(self,
threshold=0.5,
glasses_threshold=0.3,
hold_threshold=0.6):
self.threshold = threshold
self.glasses_threshold = glasses_threshold
self.hold_threshold = hold_threshold
def __call__(self, x, file_names=None):
if isinstance(x, dict):
x = x['logits']
assert isinstance(x, paddle.Tensor)
if file_names is not None:
assert x.shape[0] == len(file_names)
x = F.sigmoid(x).numpy()
# postprocess output of predictor
age_list = ['AgeLess18', 'Age18-60', 'AgeOver60']
direct_list = ['Front', 'Side', 'Back']
bag_list = ['HandBag', 'ShoulderBag', 'Backpack']
upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice']
lower_list = [
'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
'Skirt&Dress'
]
batch_res = []
for idx, res in enumerate(x):
res = res.tolist()
label_res = []
# gender
gender = 'Female' if res[22] > self.threshold else 'Male'
label_res.append(gender)
# age
age = age_list[np.argmax(res[19:22])]
label_res.append(age)
# direction
direction = direct_list[np.argmax(res[23:])]
label_res.append(direction)
# glasses
glasses = 'Glasses: '
if res[1] > self.glasses_threshold:
glasses += 'True'
else:
glasses += 'False'
label_res.append(glasses)
# hat
hat = 'Hat: '
if res[0] > self.threshold:
hat += 'True'
else:
hat += 'False'
label_res.append(hat)
# hold obj
hold_obj = 'HoldObjectsInFront: '
if res[18] > self.hold_threshold:
hold_obj += 'True'
else:
hold_obj += 'False'
label_res.append(hold_obj)
# bag
bag = bag_list[np.argmax(res[15:18])]
bag_score = res[15 + np.argmax(res[15:18])]
bag_label = bag if bag_score > self.threshold else 'No bag'
label_res.append(bag_label)
# upper
upper_res = res[4:8]
upper_label = 'Upper:'
sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
upper_label += ' {}'.format(sleeve)
for i, r in enumerate(upper_res):
if r > self.threshold:
upper_label += ' {}'.format(upper_list[i])
label_res.append(upper_label)
# lower
lower_res = res[8:14]
lower_label = 'Lower: '
has_lower = False
for i, l in enumerate(lower_res):
if l > self.threshold:
lower_label += ' {}'.format(lower_list[i])
has_lower = True
if not has_lower:
lower_label += ' {}'.format(lower_list[np.argmax(lower_res)])
label_res.append(lower_label)
# shoe
shoe = 'Boots' if res[14] > self.threshold else 'No boots'
label_res.append(shoe)
threshold_list = [0.5] * len(res)
threshold_list[1] = self.glasses_threshold
threshold_list[18] = self.hold_threshold
pred_res = (np.array(res) > np.array(threshold_list)
).astype(np.int8).tolist()
batch_res.append({"attributes": label_res, "output": pred_res})
return batch_res
class TableAttribute(object):
def __init__(self,
source_threshold=0.5,
number_threshold=0.5,
color_threshold=0.5,
clarity_threshold=0.5,
obstruction_threshold=0.5,
angle_threshold=0.5,
):
self.source_threshold = source_threshold
self.number_threshold = number_threshold
self.color_threshold = color_threshold
self.clarity_threshold = clarity_threshold
self.obstruction_threshold = obstruction_threshold
self.angle_threshold = angle_threshold
def __call__(self, x, file_names=None):
if isinstance(x, dict):
x = x['logits']
assert isinstance(x, paddle.Tensor)
if file_names is not None:
assert x.shape[0] == len(file_names)
x = F.sigmoid(x).numpy()
# postprocess output of predictor
batch_res = []
for idx, res in enumerate(x):
res = res.tolist()
label_res = []
source = 'Scanned' if res[0] > self.source_threshold else 'Photo'
number = 'Little' if res[1] > self.number_threshold else 'Numerous'
color = 'Black-and-White' if res[2] > self.color_threshold else 'Multicolor'
clarity = 'Clear' if res[3] > self.clarity_threshold else 'Blurry'
obstruction = 'Without-Obstacles' if res[4] > self.number_threshold else 'With-Obstacles'
angle = 'Horizontal' if res[5] > self.number_threshold else 'Tilted'
label_res = [source, number, color, clarity, obstruction, angle]
threshold_list = [self.source_threshold, self.number_threshold, self.color_threshold, self.clarity_threshold, self.obstruction_threshold, self.angle_threshold]
pred_res = (np.array(res) > np.array(threshold_list)
).astype(np.int8).tolist()
batch_res.append({"attributes": label_res, "output": pred_res, "file_name": file_names[idx]})
return batch_res