319 lines
11 KiB
Python
319 lines
11 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import copy
|
|
import os
|
|
|
|
import numpy as np
|
|
import nvidia.dali.ops as ops
|
|
import nvidia.dali.types as types
|
|
import paddle
|
|
from nvidia.dali import fn
|
|
from nvidia.dali.pipeline import Pipeline
|
|
from nvidia.dali.plugin.paddle import DALIGenericIterator
|
|
|
|
|
|
class HybridTrainPipe(Pipeline):
|
|
def __init__(self,
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id=0,
|
|
num_shards=1,
|
|
random_shuffle=True,
|
|
num_threads=4,
|
|
seed=42,
|
|
pad_output=False,
|
|
output_dtype=types.FLOAT,
|
|
dataset='Train'):
|
|
super(HybridTrainPipe, self).__init__(
|
|
batch_size, num_threads, device_id, seed=seed)
|
|
self.input = ops.readers.File(
|
|
file_root=file_root,
|
|
file_list=file_list,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
random_shuffle=random_shuffle)
|
|
# set internal nvJPEG buffers size to handle full-sized ImageNet images
|
|
# without additional reallocations
|
|
device_memory_padding = 211025920
|
|
host_memory_padding = 140544512
|
|
self.decode = ops.decoders.ImageRandomCrop(
|
|
device='mixed',
|
|
output_type=types.DALIImageType.RGB,
|
|
device_memory_padding=device_memory_padding,
|
|
host_memory_padding=host_memory_padding,
|
|
random_aspect_ratio=[lower, upper],
|
|
random_area=[min_area, 1.0],
|
|
num_attempts=100)
|
|
self.res = ops.Resize(
|
|
device='gpu', resize_x=crop, resize_y=crop, interp_type=interp)
|
|
self.cmnp = ops.CropMirrorNormalize(
|
|
device="gpu",
|
|
dtype=output_dtype,
|
|
output_layout='CHW',
|
|
crop=(crop, crop),
|
|
mean=mean,
|
|
std=std,
|
|
pad_output=pad_output)
|
|
self.coin = ops.random.CoinFlip(probability=0.5)
|
|
self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu")
|
|
|
|
def define_graph(self):
|
|
rng = self.coin()
|
|
jpegs, labels = self.input(name="Reader")
|
|
images = self.decode(jpegs)
|
|
images = self.res(images)
|
|
output = self.cmnp(images.gpu(), mirror=rng)
|
|
return [output, self.to_int64(labels.gpu())]
|
|
|
|
def __len__(self):
|
|
return self.epoch_size("Reader")
|
|
|
|
|
|
class HybridValPipe(Pipeline):
|
|
def __init__(self,
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id=0,
|
|
num_shards=1,
|
|
random_shuffle=False,
|
|
num_threads=4,
|
|
seed=42,
|
|
pad_output=False,
|
|
output_dtype=types.FLOAT):
|
|
super(HybridValPipe, self).__init__(
|
|
batch_size, num_threads, device_id, seed=seed)
|
|
self.input = ops.readers.File(
|
|
file_root=file_root,
|
|
file_list=file_list,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
random_shuffle=random_shuffle)
|
|
self.decode = ops.decoders.Image(device="mixed")
|
|
self.res = ops.Resize(
|
|
device="gpu", resize_shorter=resize_shorter, interp_type=interp)
|
|
self.cmnp = ops.CropMirrorNormalize(
|
|
device="gpu",
|
|
dtype=output_dtype,
|
|
output_layout='CHW',
|
|
crop=(crop, crop),
|
|
mean=mean,
|
|
std=std,
|
|
pad_output=pad_output)
|
|
self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu")
|
|
|
|
def define_graph(self):
|
|
jpegs, labels = self.input(name="Reader")
|
|
images = self.decode(jpegs)
|
|
images = self.res(images)
|
|
output = self.cmnp(images)
|
|
return [output, self.to_int64(labels.gpu())]
|
|
|
|
def __len__(self):
|
|
return self.epoch_size("Reader")
|
|
|
|
|
|
def dali_dataloader(config, mode, device, seed=None):
|
|
assert "gpu" in device, "gpu training is required for DALI"
|
|
device_id = int(device.split(':')[1])
|
|
config_dataloader = config[mode]
|
|
seed = 42 if seed is None else seed
|
|
ops = [
|
|
list(x.keys())[0]
|
|
for x in config_dataloader["dataset"]["transform_ops"]
|
|
]
|
|
support_ops_train = [
|
|
"DecodeImage", "NormalizeImage", "RandFlipImage", "RandCropImage"
|
|
]
|
|
support_ops_eval = [
|
|
"DecodeImage", "ResizeImage", "CropImage", "NormalizeImage"
|
|
]
|
|
|
|
if mode.lower() == 'train':
|
|
assert set(ops) == set(
|
|
support_ops_train
|
|
), "The supported trasform_ops for train_dataset in dali is : {}".format(
|
|
",".join(support_ops_train))
|
|
else:
|
|
assert set(ops) == set(
|
|
support_ops_eval
|
|
), "The supported trasform_ops for eval_dataset in dali is : {}".format(
|
|
",".join(support_ops_eval))
|
|
|
|
normalize_ops = [
|
|
op for op in config_dataloader["dataset"]["transform_ops"]
|
|
if "NormalizeImage" in op
|
|
][0]["NormalizeImage"]
|
|
channel_num = normalize_ops.get("channel_num", 3)
|
|
output_dtype = types.FLOAT16 if normalize_ops.get("output_fp16",
|
|
False) else types.FLOAT
|
|
|
|
env = os.environ
|
|
# assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
|
|
# "Please leave enough GPU memory for DALI workspace, e.g., by setting" \
|
|
# " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"
|
|
|
|
gpu_num = paddle.distributed.get_world_size()
|
|
|
|
batch_size = config_dataloader["sampler"]["batch_size"]
|
|
|
|
file_root = config_dataloader["dataset"]["image_root"]
|
|
file_list = config_dataloader["dataset"]["cls_label_path"]
|
|
|
|
interp = 1 # settings.interpolation or 1 # default to linear
|
|
interp_map = {
|
|
0: types.DALIInterpType.INTERP_NN, # cv2.INTER_NEAREST
|
|
1: types.DALIInterpType.INTERP_LINEAR, # cv2.INTER_LINEAR
|
|
2: types.DALIInterpType.INTERP_CUBIC, # cv2.INTER_CUBIC
|
|
3: types.DALIInterpType.
|
|
INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
|
|
}
|
|
|
|
assert interp in interp_map, "interpolation method not supported by DALI"
|
|
interp = interp_map[interp]
|
|
pad_output = channel_num == 4
|
|
|
|
transforms = {
|
|
k: v
|
|
for d in config_dataloader["dataset"]["transform_ops"]
|
|
for k, v in d.items()
|
|
}
|
|
|
|
scale = transforms["NormalizeImage"].get("scale", 1.0 / 255)
|
|
scale = eval(scale) if isinstance(scale, str) else scale
|
|
mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406])
|
|
std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225])
|
|
mean = [v / scale for v in mean]
|
|
std = [v / scale for v in std]
|
|
|
|
sampler_name = config_dataloader["sampler"].get("name",
|
|
"DistributedBatchSampler")
|
|
assert sampler_name in ["DistributedBatchSampler", "BatchSampler"]
|
|
|
|
if mode.lower() == "train":
|
|
resize_shorter = 256
|
|
crop = transforms["RandCropImage"]["size"]
|
|
scale = transforms["RandCropImage"].get("scale", [0.08, 1.])
|
|
ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3])
|
|
min_area = scale[0]
|
|
lower = ratio[0]
|
|
upper = ratio[1]
|
|
|
|
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env:
|
|
shard_id = int(env['PADDLE_TRAINER_ID'])
|
|
num_shards = int(env['PADDLE_TRAINERS_NUM'])
|
|
device_id = int(env['FLAGS_selected_gpus'])
|
|
pipe = HybridTrainPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id,
|
|
num_shards,
|
|
seed=seed + shard_id,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
pipelines = [pipe]
|
|
# sample_per_shard = len(pipe) // num_shards
|
|
else:
|
|
pipe = HybridTrainPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id=device_id,
|
|
shard_id=0,
|
|
num_shards=1,
|
|
seed=seed,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
pipelines = [pipe]
|
|
# sample_per_shard = len(pipelines[0])
|
|
return DALIGenericIterator(
|
|
pipelines, ['data', 'label'], reader_name='Reader')
|
|
else:
|
|
resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
|
|
crop = transforms["CropImage"]["size"]
|
|
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env and sampler_name == "DistributedBatchSampler":
|
|
shard_id = int(env['PADDLE_TRAINER_ID'])
|
|
num_shards = int(env['PADDLE_TRAINERS_NUM'])
|
|
device_id = int(env['FLAGS_selected_gpus'])
|
|
|
|
pipe = HybridValPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id=device_id,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
else:
|
|
pipe = HybridValPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id=device_id,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
return DALIGenericIterator(
|
|
[pipe], ['data', 'label'], reader_name="Reader")
|