PaddleClas/docs/zh_CN/models/ResNet.md

441 lines
23 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# ResNet 系列
-----
## 目录
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [1.3 Benchmark](#1.3)
- [1.3.1 基于 V100 GPU 的预测速度](#1.3.1)
- [1.3.2 基于 T4 GPU 的预测速度](#1.3.2)
- [2. 模型快速体验](#2)
- [2.1 安装 paddlepaddle](#2.1)
- [2.2 安装 paddleclas](#2.2)
- [2.3 预测](#2.3)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
- [3.3 模型训练](#3.3)
- [3.4 模型评估](#3.4)
- [3.5 模型预测](#3.5)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.1.1 基于训练得到的权重导出 inference 模型](#4.1.1)
- [4.1.2 直接下载 inference 模型](#4.1.2)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.2.1 预测单张图像](#4.2.1)
- [4.2.2 基于文件夹的批量预测](#4.2.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
ResNet 系列模型是在 2015 年提出的,一举在 ILSVRC2015 比赛中取得冠军top5 错误率为 3.57%。该网络创新性的提出了残差结构,通过堆叠多个残差结构从而构建了 ResNet 网络。实验表明使用残差块可以有效地提升收敛速度和精度。
斯坦福大学的 Joyce Xu 将 ResNet 称为「真正重新定义了我们看待神经网络的方式」的三大架构之一。由于 ResNet 卓越的性能,越来越多的来自学术界和工业界学者和工程师对其结构进行了改进,比较出名的有 Wide-ResNet, ResNet-vc, ResNet-vd, Res2Net 等,其中 ResNet-vc 与 ResNet-vd 的参数量和计算量与 ResNet 几乎一致,所以在此我们将其与 ResNet 统一归为 ResNet 系列。
PaddleClas 提供的 ResNet 系列的模型包括 ResNet50ResNet50_vdResNet50_vd_ssldResNet200_vd 等 16 个预训练模型。在训练层面上ResNet 的模型采用了训练 ImageNet 的标准训练流程,而其余改进版模型采用了更多的训练策略,如 learning rate 的下降方式采用了 cosine decay引入了 label smoothing 的标签正则方式,在数据预处理加入了 mixup 的操作,迭代总轮数从 120 个 epoch 增加到 200 个 epoch。
其中,后缀使用`_ssld`的模型采用了 SSLD 知识蒸馏,保证模型结构不变的情况下,进一步提升了模型的精度。
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ResNet18 | 0.710 | 0.899 | 0.696 | 0.891 | 3.660 | 11.690 |
| ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 |
| ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 |
| ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 |
| ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 |
| ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 |
| ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 |
| ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 |
| ResNet101 | 0.776 | 0.936 | 0.776 | 0.938 | 15.520 | 44.550 |
| ResNet101_vd | 0.802 | 0.950 | | | 16.100 | 44.570 |
| ResNet152 | 0.783 | 0.940 | 0.778 | 0.938 | 23.050 | 60.190 |
| ResNet152_vd | 0.806 | 0.953 | | | 23.530 | 60.210 |
| ResNet200_vd | 0.809 | 0.953 | | | 30.530 | 74.740 |
| ResNet50_vd_ssld | 0.830 | 0.964 | | | 8.670 | 25.580 |
| Fix_ResNet50_vd_ssld | 0.840 | 0.970 | | | 17.696 | 25.580 |
| ResNet101_vd_ssld | 0.837 | 0.967 | | | 16.100 | 44.570 |
**备注:** `Fix_ResNet50_vd_ssld` 是固定 `ResNet50_vd_ssld` 除 FC 层外所有的网络参数,在 320x320 的图像输入分辨率下,基于 ImageNet-1k 数据集微调得到。
<a name='1.3'></a>
## 1.3 Benchmark
<a name='1.3.1'></a>
### 1.3.1 基于 V100 GPU 的预测速度
| Models | Size | Latency(ms)<br>bs=1 | Latency(ms)<br>bs=4 | Latency(ms)<br>bs=8 |
|:--:|:--:|:--:|:--:|:--:|
| ResNet18 | 224 | 1.22 | 2.19 | 3.63 |
| ResNet18_vd | 224 | 1.26 | 2.28 | 3.89 |
| ResNet34 | 224 | 1.97 | 3.25 | 5.70 |
| ResNet34_vd | 224 | 2.00 | 3.28 | 5.84 |
| ResNet34_vd_ssld | 224 | 2.00 | 3.26 | 5.85 |
| ResNet50 | 224 | 2.54 | 4.79 | 7.40 |
| ResNet50_vc | 224 | 2.57 | 4.83 | 7.52 |
| ResNet50_vd | 224 | 2.60 | 4.86 | 7.63 |
| ResNet101 | 224 | 4.37 | 8.18 | 12.38 |
| ResNet101_vd | 224 | 4.43 | 8.25 | 12.60 |
| ResNet152 | 224 | 6.05 | 11.41 | 17.33 |
| ResNet152_vd | 224 | 6.11 | 11.51 | 17.59 |
| ResNet200_vd | 224 | 7.70 | 14.57 | 22.16 |
| ResNet50_vd_ssld | 224 | 2.59 | 4.87 | 7.62 |
| ResNet101_vd_ssld | 224 | 4.43 | 8.25 | 12.58 |
**备注:** 精度类型为 FP32推理过程使用 TensorRT。
<a name='1.3.2'></a>
### 1.3.2 基于 T4 GPU 的预测速度
| Models | Size | Latency(ms)<br>FP16<br>bs=1 | Latency(ms)<br>FP16<br>bs=4 | Latency(ms)<br>FP16<br>bs=8 | Latency(ms)<br>FP32<br>bs=1 | Latency(ms)<br>FP32<br>bs=4 | Latency(ms)<br>FP32<br>bs=8 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ResNet18 | 224 | 1.3568 | 2.5225 | 3.61904 | 1.45606 | 3.56305 | 6.28798 |
| ResNet18_vd | 224 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 |
| ResNet34 | 224 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 |
| ResNet34_vd | 224 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet34_vd_ssld | 224 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet50 | 224 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 |
| ResNet50_vc | 224 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 |
| ResNet50_vd | 224 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
| ResNet101 | 224 | 5.04037 | 7.73673 | 10.8936 | 6.07125 | 13.40573 | 24.3597 |
| ResNet101_vd | 224 | 5.05972 | 7.83685 | 11.34235 | 6.11704 | 13.76222 | 25.11071 |
| ResNet152 | 224 | 7.28665 | 10.62001 | 14.90317 | 8.50198 | 19.17073 | 35.78384 |
| ResNet152_vd | 224 | 7.29127 | 10.86137 | 15.32444 | 8.54376 | 19.52157 | 36.64445 |
| ResNet200_vd | 224 | 9.36026 | 13.5474 | 19.0725 | 10.80619 | 25.01731 | 48.81399 |
| ResNet50_vd_ssld | 224 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
| Fix_ResNet50_vd_ssld | 320 | 3.42818 | 7.51534 | 13.19370 | 5.07696 | 14.64218 | 27.01453 |
| ResNet101_vd_ssld | 224 | 5.05972 | 7.83685 | 11.34235 | 6.11704 | 13.76222 | 25.11071 |
**备注:** 推理过程使用 TensorRT。
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddlepaddle
- 您的机器安装的是 CUDA9 或 CUDA10请运行以下命令安装
```bash
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
```
- 您的机器是CPU请运行以下命令安装
```bash
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
<a name="2.2"></a>
### 2.2 安装 paddleclas
使用如下命令快速安装 paddleclas
```
pip3 install paddleclas
```
<a name="2.3"></a>
### 2.3 预测
* 在命令行中使用 ResNet50 的权重快速预测
```bash
paddleclas --model_name=ResNet50 --infer_imgs="docs/images/inference_deployment/whl_demo.jpg"
```
结果如下:
```
>>> result
class_ids: [8, 7, 86, 82, 80], scores: [0.97968, 0.02028, 3e-05, 1e-05, 0.0], label_names: ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse'], filename: docs/images/inference_deployment/whl_demo.jpg
Predict complete!
```
**备注** 更换 ResNet 的其他 scale 的模型时,只需替换 `model_name`,如将此时的模型改为 `ResNet18` 时,只需要将 `--model_name=ResNet50` 改为 `--model_name=ResNet18` 即可。
* 在 Python 代码中预测
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
result = clas.predict(infer_imgs)
print(next(result))
```
**备注**`PaddleClas.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭
代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果。返回结果示例如下:
```
>>> result
[{'class_ids': [8, 7, 86, 82, 80], 'scores': [0.97968, 0.02028, 3e-05, 1e-05, 0.0], 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse'], 'filename': 'docs/images/inference_deployment/whl_demo.jpg'}]
```
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
### 3.2 数据准备
请在[ImageNet 官网](https://www.image-net.org/)准备 ImageNet-1k 相关的数据。
进入 PaddleClas 目录。
```
cd path_to_PaddleClas
```
进入 `dataset/` 目录,将下载好的数据命名为 `ILSVRC2012` ,存放于此。 `ILSVRC2012` 目录中具有以下数据:
```
├── train
│   ├── n01440764
│   │   ├── n01440764_10026.JPEG
│   │   ├── n01440764_10027.JPEG
├── train_list.txt
...
├── val
│   ├── ILSVRC2012_val_00000001.JPEG
│   ├── ILSVRC2012_val_00000002.JPEG
├── val_list.txt
```
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。
**备注:**
* 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。
<a name="3.3"></a>
### 3.3 模型训练
`ppcls/configs/ImageNet/ResNet/ResNet50.yaml` 中提供了 ResNet50 训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
```
**备注:**
* 当前精度最佳的模型会保存在 `output/ResNet50/best_model.pdparams`
<a name="3.4"></a>
### 3.4 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
```bash
python3 tools/eval.py \
-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \
-o Global.pretrained_model=output/ResNet50/best_model
```
其中 `-o Global.pretrained_model="output/ResNet50/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
<a name="3.5"></a>
### 3.5 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
```python
python3 tools/infer.py \
-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \
-o Global.pretrained_model=output/ResNet50/best_model
```
输出结果如下:
```
[{'class_ids': [8, 7, 86, 82, 80], 'scores': [0.97968, 0.02028, 3e-05, 1e-05, 0.0], 'file_name': 'docs/images/inference_deployment/whl_demo.jpg', 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse']}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/ResNet50/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `docs/images/inference_deployment/whl_demo.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 默认输出的是 Top-5 的值,如果希望输出 Top-k 的值,可以指定`-o Infer.PostProcess.topk=k`,其中,`k` 为您指定的值。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端提供高性能的推理能力。相比于直接基于预训练模型进行预测Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="4.1.1"></a>
### 4.1.1 基于训练得到的权重导出 inference 模型
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
```bash
python3 tools/export_model.py \
-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \
-o Global.pretrained_model=output/ResNet50/best_model \
-o Global.save_inference_dir=deploy/models/ResNet50_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `ResNet50_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── ResNet50_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="4.1.2"></a>
### 4.1.2 直接下载 inference 模型
[4.1.1 小节](#4.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar && tar -xf ResNet50_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── ResNet50_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
```
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
<a name="4.2.1"></a>
#### 4.2.1 预测单张图像
返回 `deploy` 目录:
```
cd ../
```
运行下面的命令,对图像 `./images/ImageNet/ILSVRC2012_val_00000010.jpeg` 进行分类。
```shell
# 使用下面的命令使用 GPU 进行预测
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer
# 使用下面的命令使用 CPU 进行预测
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer -o Global.use_gpu=False
```
输出结果如下。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [153, 332, 229, 204, 265], score(s): [0.41, 0.39, 0.05, 0.04, 0.04], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Angora, Angora rabbit', 'Old English sheepdog, bobtail', 'Lhasa, Lhasa apso', 'toy poodle']
```
<a name="4.2.2"></a>
#### 4.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer -o Global.infer_imgs=images/ImageNet/
```
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
ILSVRC2012_val_00000010.jpeg: class id(s): [153, 332, 229, 204, 265], score(s): [0.41, 0.39, 0.05, 0.04, 0.04], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Angora, Angora rabbit', 'Old English sheepdog, bobtail', 'Lhasa, Lhasa apso', 'toy poodle']
ILSVRC2012_val_00010010.jpeg: class id(s): [902, 626, 531, 487, 761], score(s): [0.47, 0.10, 0.05, 0.04, 0.03], label_name(s): ['whistle', 'lighter, light, igniter, ignitor', 'digital watch', 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 'remote control, remote']
ILSVRC2012_val_00020010.jpeg: class id(s): [178, 211, 246, 236, 210], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['Weimaraner', 'vizsla, Hungarian pointer', 'Great Dane', 'Doberman, Doberman pinscher', 'German short-haired pointer']
ILSVRC2012_val_00030010.jpeg: class id(s): [80, 23, 83, 93, 136], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['black grouse', 'vulture', 'prairie chicken, prairie grouse, prairie fowl', 'hornbill', 'European gallinule, Porphyrio porphyrio']
```
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署包括TensorRT/OpenVINO/MNN/TNN/NCNN以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。