PaddleClas/ppcls/data/dataloader/person_dataset.py

225 lines
8.0 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
from paddle.io import Dataset
import os
import cv2
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.utils import logger
from .common_dataset import create_operators
import os.path as osp
import glob
import re
from PIL import Image
class Market1501(Dataset):
"""
Market1501
Reference:
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
URL: http://www.liangzheng.org/Project/project_reid.html
Dataset statistics:
# identities: 1501 (+1 for background)
# images: 12936 (train) + 3368 (query) + 15913 (gallery)
"""
_dataset_dir = 'market1501/Market-1501-v15.09.15'
def __init__(self,
image_root,
cls_label_path,
transform_ops=None,
backend="cv2"):
self._img_root = image_root
self._cls_path = cls_label_path # the sub folder in the dataset
self._dataset_dir = osp.join(image_root, self._dataset_dir,
self._cls_path)
self._check_before_run()
if transform_ops:
self._transform_ops = create_operators(transform_ops)
self.backend = backend
self._dtype = paddle.get_default_dtype()
self._load_anno(relabel=True if 'train' in self._cls_path else False)
def _check_before_run(self):
"""Check if the file is available before going deeper"""
if not osp.exists(self._dataset_dir):
raise RuntimeError("'{}' is not available".format(
self._dataset_dir))
def _load_anno(self, relabel=False):
img_paths = glob.glob(osp.join(self._dataset_dir, '*.jpg'))
pattern = re.compile(r'([-\d]+)_c(\d)')
self.images = []
self.labels = []
self.cameras = []
pid_container = set()
for img_path in sorted(img_paths):
pid, _ = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
pid_container.add(pid)
pid2label = {pid: label for label, pid in enumerate(pid_container)}
for img_path in sorted(img_paths):
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 1501 # pid == 0 means background
assert 1 <= camid <= 6
camid -= 1 # index starts from 0
if relabel: pid = pid2label[pid]
self.images.append(img_path)
self.labels.append(pid)
self.cameras.append(camid)
self.num_pids, self.num_imgs, self.num_cams = get_imagedata_info(
self.images, self.labels, self.cameras, subfolder=self._cls_path)
def __getitem__(self, idx):
try:
img = Image.open(self.images[idx]).convert('RGB')
if self.backend == "cv2":
img = np.array(img, dtype="float32").astype(np.uint8)
if self._transform_ops:
img = transform(img, self._transform_ops)
if self.backend == "cv2":
img = img.transpose((2, 0, 1))
return (img, self.labels[idx], self.cameras[idx])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
def __len__(self):
return len(self.images)
@property
def class_num(self):
return len(set(self.labels))
class MSMT17(Dataset):
"""
MSMT17
Reference:
Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.
URL: http://www.pkuvmc.com/publications/msmt17.html
Dataset statistics:
# identities: 4101
# images: 32621 (train) + 11659 (query) + 82161 (gallery)
# cameras: 15
"""
_dataset_dir = 'msmt17/MSMT17_V1'
def __init__(self, image_root, cls_label_path, transform_ops=None):
self._img_root = image_root
self._cls_path = cls_label_path # the sub folder in the dataset
self._dataset_dir = osp.join(image_root, self._dataset_dir,
self._cls_path)
self._check_before_run()
if transform_ops:
self._transform_ops = create_operators(transform_ops)
self._dtype = paddle.get_default_dtype()
self._load_anno(relabel=True if 'train' in self._cls_path else False)
def _check_before_run(self):
"""Check if the file is available before going deeper"""
if not osp.exists(self._dataset_dir):
raise RuntimeError("'{}' is not available".format(
self._dataset_dir))
def _load_anno(self, relabel=False):
img_paths = glob.glob(osp.join(self._dataset_dir, '*.jpg'))
pattern = re.compile(r'([-\d]+)_c(\d+)')
self.images = []
self.labels = []
self.cameras = []
pid_container = set()
for img_path in img_paths:
pid, _ = map(int, pattern.search(img_path).groups())
if pid == -1:
continue # junk images are just ignored
pid_container.add(pid)
pid2label = {pid: label for label, pid in enumerate(pid_container)}
for img_path in img_paths:
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1:
continue # junk images are just ignored
assert 1 <= camid <= 15
camid -= 1 # index starts from 0
if relabel:
pid = pid2label[pid]
self.images.append(img_path)
self.labels.append(pid)
self.cameras.append(camid)
self.num_pids, self.num_imgs, self.num_cams = get_imagedata_info(
self.images, self.labels, self.cameras, subfolder=self._cls_path)
def __getitem__(self, idx):
try:
img = Image.open(self.images[idx]).convert('RGB')
img = np.array(img, dtype="float32").astype(np.uint8)
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
return (img, self.labels[idx], self.cameras[idx])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
def __len__(self):
return len(self.images)
@property
def class_num(self):
return len(set(self.labels))
def get_imagedata_info(data, labels, cameras, subfolder='train'):
pids, cams = [], []
for _, pid, camid in zip(data, labels, cameras):
pids += [pid]
cams += [camid]
pids = set(pids)
cams = set(cams)
num_pids = len(pids)
num_cams = len(cams)
num_imgs = len(data)
print("Dataset statistics:")
print(" ----------------------------------------")
print(" subset | # ids | # images | # cameras")
print(" ----------------------------------------")
print(" {} | {:5d} | {:8d} | {:9d}".format(subfolder, num_pids,
num_imgs, num_cams))
print(" ----------------------------------------")
return num_pids, num_imgs, num_cams