PaddleClas/ppcls/engine/train/train_metabin.py

249 lines
9.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2011.14670v2
from __future__ import absolute_import, division, print_function
import time
import paddle
import numpy as np
from collections import defaultdict
from ppcls.engine.train.utils import update_loss, update_metric, log_info, type_name
from ppcls.utils import profiler
from ppcls.data import build_dataloader
from ppcls.loss import build_loss
def train_epoch_metabin(engine, epoch_id, print_batch_step):
tic = time.time()
if not hasattr(engine, "train_dataloader_iter"):
engine.train_dataloader_iter = iter(engine.train_dataloader)
if not hasattr(engine, "meta_dataloader"):
engine.meta_dataloader = build_dataloader(
config=engine.config['DataLoader']['Metalearning'],
mode='Train',
device=engine.device)
engine.meta_dataloader_iter = iter(engine.meta_dataloader)
num_domain = engine.train_dataloader.dataset.num_cams
for iter_id in range(engine.iter_per_epoch):
# fetch data batch from dataloader
try:
train_batch = next(engine.train_dataloader_iter)
except Exception:
engine.train_dataloader_iter = iter(engine.train_dataloader)
train_batch = next(engine.train_dataloader_iter)
try:
mtrain_batch, mtest_batch = get_meta_data(
engine.meta_dataloader_iter, num_domain)
except Exception:
engine.meta_dataloader_iter = iter(engine.meta_dataloader)
mtrain_batch, mtest_batch = get_meta_data(
engine.meta_dataloader_iter, num_domain)
profiler.add_profiler_step(engine.config["profiler_options"])
if iter_id == 5:
for key in engine.time_info:
engine.time_info[key].reset()
engine.time_info["reader_cost"].update(time.time() - tic)
train_batch_size = train_batch[0].shape[0]
mtrain_batch_size = mtrain_batch[0].shape[0]
mtest_batch_size = mtest_batch[0].shape[0]
if not engine.config["Global"].get("use_multilabel", False):
train_batch[1] = train_batch[1].reshape([train_batch_size, -1])
mtrain_batch[1] = mtrain_batch[1].reshape([mtrain_batch_size, -1])
mtest_batch[1] = mtest_batch[1].reshape([mtest_batch_size, -1])
engine.global_step += 1
if engine.global_step == 1: # update model (execpt gate) to warmup
for i in range(engine.config["Global"]["warmup_iter"] - 1):
out, basic_loss_dict = basic_update(engine, train_batch)
loss_dict = basic_loss_dict
try:
train_batch = next(engine.train_dataloader_iter)
except Exception:
engine.train_dataloader_iter = iter(
engine.train_dataloader)
train_batch = next(engine.train_dataloader_iter)
out, basic_loss_dict = basic_update(engine=engine, batch=train_batch)
mtrain_loss_dict, mtest_loss_dict = metalearning_update(
engine=engine, mtrain_batch=mtrain_batch, mtest_batch=mtest_batch)
loss_dict = {
**
{"train_" + key: value
for key, value in basic_loss_dict.items()}, ** {
"mtrain_" + key: value
for key, value in mtrain_loss_dict.items()
}, **
{"mtest_" + key: value
for key, value in mtest_loss_dict.items()}
}
# step lr (by iter)
# the last lr_sch is cyclic_lr
for i in range(len(engine.lr_sch) - 1):
if not getattr(engine.lr_sch[i], "by_epoch", False):
engine.lr_sch[i].step()
# update ema
if engine.ema:
engine.model_ema.update(engine.model)
# below code just for logging
# update metric_for_logger
update_metric(engine, out, train_batch, train_batch_size)
# update_loss_for_logger
update_loss(engine, loss_dict, train_batch_size)
engine.time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
log_info(engine, train_batch_size, epoch_id, iter_id)
tic = time.time()
# step lr(by epoch)
# the last lr_sch is cyclic_lr
for i in range(len(engine.lr_sch) - 1):
if getattr(engine.lr_sch[i], "by_epoch", False) and \
type_name(engine.lr_sch[i]) != "ReduceOnPlateau":
engine.lr_sch[i].step()
def setup_opt(engine, stage):
assert stage in ["train", "mtrain", "mtest"]
opt = defaultdict()
if stage == "train":
opt["bn_mode"] = "general"
opt["enable_inside_update"] = False
opt["lr_gate"] = 0.0
elif stage == "mtrain":
opt["bn_mode"] = "hold"
opt["enable_inside_update"] = False
opt["lr_gate"] = 0.0
elif stage == "mtest":
norm_lr = engine.lr_sch[1].last_lr
cyclic_lr = engine.lr_sch[2].get_lr()
engine.lr_sch[2].step() # update cyclic learning rate
opt["bn_mode"] = "hold"
opt["enable_inside_update"] = True
opt["lr_gate"] = norm_lr * cyclic_lr
for name, layer in engine.model.backbone.named_sublayers():
if "bn" == name.split('.')[-1]:
layer.setup_opt(opt)
def reset_opt(model):
for name, layer in model.backbone.named_sublayers():
if "bn" == name.split('.')[-1]:
layer.reset_opt()
def get_meta_data(meta_dataloader_iter, num_domain):
"""
fetch data batch from dataloader then divide the batch by domains
"""
list_all = np.random.permutation(num_domain)
list_mtrain = list(list_all[:num_domain // 2])
batch = next(meta_dataloader_iter)
domain_idx = batch[2]
cnt = 0
for sample in list_mtrain:
if cnt == 0:
is_mtrain_domain = domain_idx == sample
else:
is_mtrain_domain = paddle.logical_or(is_mtrain_domain,
domain_idx == sample)
cnt += 1
# mtrain_batch
if not any(is_mtrain_domain):
mtrain_batch = None
raise RuntimeError
else:
mtrain_batch = [batch[i][is_mtrain_domain] for i in range(len(batch))]
# mtest_batch
is_mtest_domains = is_mtrain_domain == False
if not any(is_mtest_domains):
mtest_batch = None
raise RuntimeError
else:
mtest_batch = [batch[i][is_mtest_domains] for i in range(len(batch))]
return mtrain_batch, mtest_batch
def forward(engine, batch, loss_func):
batch_info = defaultdict()
batch_info = {"label": batch[1], "domain": batch[2]}
amp_level = engine.config["AMP"].get("level", "O1").upper()
with paddle.amp.auto_cast(
custom_black_list={"flatten_contiguous_range", "greater_than"},
level=amp_level):
out = engine.model(batch[0], batch[1])
loss_dict = loss_func(out, batch_info)
return out, loss_dict
def backward(engine, loss, optimizer):
scaled = engine.scaler.scale(loss)
scaled.backward()
engine.scaler.minimize(optimizer, scaled)
for name, layer in engine.model.backbone.named_sublayers():
if "gate" == name.split('.')[-1]:
layer.clip_gate()
def basic_update(engine, batch):
setup_opt(engine, "train")
train_loss_func = build_loss(engine.config["Loss"]["Basic"])
out, train_loss_dict = forward(engine, batch, train_loss_func)
train_loss = train_loss_dict["loss"]
backward(engine, train_loss, engine.optimizer[0])
engine.optimizer[0].clear_grad()
reset_opt(engine.model)
return out, train_loss_dict
def metalearning_update(engine, mtrain_batch, mtest_batch):
# meta train
mtrain_loss_func = build_loss(engine.config["Loss"]["MetaTrain"])
setup_opt(engine, "mtrain")
mtrain_batch_info = defaultdict()
mtrain_batch_info = {"label": mtrain_batch[1], "domain": mtrain_batch[2]}
out = engine.model(mtrain_batch[0], mtrain_batch[1])
mtrain_loss_dict = mtrain_loss_func(out, mtrain_batch_info)
mtrain_loss = mtrain_loss_dict["loss"]
engine.optimizer[1].clear_grad()
mtrain_loss.backward()
# meta test
mtest_loss_func = build_loss(engine.config["Loss"]["MetaTest"])
setup_opt(engine, "mtest")
out, mtest_loss_dict = forward(engine, mtest_batch, mtest_loss_func)
engine.optimizer[1].clear_grad()
mtest_loss = mtest_loss_dict["loss"]
backward(engine, mtest_loss, engine.optimizer[1])
engine.optimizer[0].clear_grad()
engine.optimizer[1].clear_grad()
reset_opt(engine.model)
return mtrain_loss_dict, mtest_loss_dict