PaddleClas/paddleclas.py

357 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import numpy as np
import tarfile
import requests
from tqdm import tqdm
import tools.infer.utils as utils
import shutil
__all__ = ['PaddleClas']
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, 'inference_model')
BASE_IMAGES_DIR = os.path.join(BASE_DIR, 'images')
model_names = {
'Xception71', 'SE_ResNeXt101_32x4d', 'ShuffleNetV2_x0_5', 'ResNet34',
'ShuffleNetV2_x2_0', 'ResNeXt101_32x4d', 'HRNet_W48_C_ssld',
'ResNeSt50_fast_1s1x64d', 'MobileNetV2_x2_0', 'MobileNetV3_large_x1_0',
'Fix_ResNeXt101_32x48d_wsl', 'MobileNetV2_ssld', 'ResNeXt101_vd_64x4d',
'ResNet34_vd_ssld', 'MobileNetV3_small_x1_0', 'VGG11',
'ResNeXt50_vd_32x4d', 'MobileNetV3_large_x1_25',
'MobileNetV3_large_x1_0_ssld', 'MobileNetV2_x0_75',
'MobileNetV3_small_x0_35', 'MobileNetV1_x0_75', 'MobileNetV1_ssld',
'ResNeXt50_32x4d', 'GhostNet_x1_3_ssld', 'Res2Net101_vd_26w_4s',
'ResNet152', 'Xception65', 'EfficientNetB0', 'ResNet152_vd', 'HRNet_W18_C',
'Res2Net50_14w_8s', 'ShuffleNetV2_x0_25', 'HRNet_W64_C',
'Res2Net50_vd_26w_4s_ssld', 'HRNet_W18_C_ssld', 'ResNet18_vd',
'ResNeXt101_32x16d_wsl', 'SE_ResNeXt50_32x4d', 'SqueezeNet1_1',
'SENet154_vd', 'SqueezeNet1_0', 'GhostNet_x1_0', 'ResNet50_vc', 'DPN98',
'HRNet_W48_C', 'DenseNet264', 'SE_ResNet34_vd', 'HRNet_W44_C',
'MobileNetV3_small_x1_25', 'MobileNetV1_x0_5', 'ResNet200_vd', 'VGG13',
'EfficientNetB3', 'EfficientNetB2', 'ShuffleNetV2_x0_33',
'MobileNetV3_small_x0_75', 'ResNeXt152_vd_32x4d', 'ResNeXt101_32x32d_wsl',
'ResNet18', 'MobileNetV3_large_x0_35', 'Res2Net50_26w_4s',
'MobileNetV2_x0_5', 'EfficientNetB0_small', 'ResNet101_vd_ssld',
'EfficientNetB6', 'EfficientNetB1', 'EfficientNetB7', 'ResNeSt50',
'ShuffleNetV2_x1_0', 'MobileNetV3_small_x1_0_ssld', 'InceptionV4',
'GhostNet_x0_5', 'SE_HRNet_W64_C_ssld', 'ResNet50_ACNet_deploy',
'Xception41', 'ResNet50', 'Res2Net200_vd_26w_4s_ssld',
'Xception41_deeplab', 'SE_ResNet18_vd', 'SE_ResNeXt50_vd_32x4d',
'HRNet_W30_C', 'HRNet_W40_C', 'VGG19', 'Res2Net200_vd_26w_4s',
'ResNeXt101_32x8d_wsl', 'ResNet50_vd', 'ResNeXt152_64x4d', 'DarkNet53',
'ResNet50_vd_ssld', 'ResNeXt101_64x4d', 'MobileNetV1_x0_25',
'Xception65_deeplab', 'AlexNet', 'ResNet101', 'DenseNet121',
'ResNet50_vd_v2', 'Res2Net50_vd_26w_4s', 'ResNeXt101_32x48d_wsl',
'MobileNetV3_large_x0_5', 'MobileNetV2_x0_25', 'DPN92', 'ResNet101_vd',
'MobileNetV2_x1_5', 'DPN131', 'ResNeXt50_vd_64x4d', 'ShuffleNetV2_x1_5',
'ResNet34_vd', 'MobileNetV1', 'ResNeXt152_vd_64x4d', 'DPN107', 'VGG16',
'ResNeXt50_64x4d', 'RegNetX_4GF', 'DenseNet161', 'GhostNet_x1_3',
'HRNet_W32_C', 'Fix_ResNet50_vd_ssld_v2', 'Res2Net101_vd_26w_4s_ssld',
'DenseNet201', 'DPN68', 'EfficientNetB4', 'ResNeXt152_32x4d',
'InceptionV3', 'ShuffleNetV2_swish', 'GoogLeNet', 'ResNet50_vd_ssld_v2',
'SE_ResNet50_vd', 'MobileNetV2', 'ResNeXt101_vd_32x4d',
'MobileNetV3_large_x0_75', 'MobileNetV3_small_x0_5', 'DenseNet169',
'EfficientNetB5'
}
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
raise Exception("Something went wrong while downloading models")
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def save_prelabel_results(class_id, input_filepath, output_idr):
output_dir = os.path.join(output_idr, str(class_id))
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
shutil.copy(input_filepath, output_dir)
def load_label_name_dict(path):
result = {}
if not os.path.exists(path):
print(
'Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!'
)
else:
for line in open(path, 'r'):
partition = line.split('\n')[0].partition(' ')
try:
result[int(partition[0])] = str(partition[-1])
except:
result = {}
break
return result
def parse_args(mMain=True, add_help=True):
import argparse
def str2bool(v):
return v.lower() in ("true", "t", "1")
if mMain == True:
# general params
parser = argparse.ArgumentParser(add_help=add_help)
parser.add_argument("--model_name", type=str)
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("--use_gpu", type=str2bool, default=False)
# params for preprocess
parser.add_argument("--resize_short", type=int, default=256)
parser.add_argument("--resize", type=int, default=224)
parser.add_argument("--normalize", type=str2bool, default=True)
parser.add_argument("-b", "--batch_size", type=int, default=1)
# params for predict
parser.add_argument(
"--model_file", type=str, default='') ## inference.pdmodel
parser.add_argument(
"--params_file", type=str, default='') ## inference.pdiparams
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--enable_profile", type=str2bool, default=False)
parser.add_argument("--top_k", type=int, default=1)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--enable_benchmark", type=str2bool, default=False)
parser.add_argument("--cpu_num_threads", type=int, default=10)
parser.add_argument("--hubserving", type=str2bool, default=False)
# parameters for pre-label the images
parser.add_argument("--label_name_path", type=str, default='')
parser.add_argument(
"--pre_label_image",
type=str2bool,
default=False,
help="Whether to pre-label the images using the loaded weights")
parser.add_argument("--pre_label_out_idr", type=str, default=None)
return parser.parse_args()
else:
return argparse.Namespace(
model_name='',
image_file='',
use_gpu=False,
use_fp16=False,
use_tensorrt=False,
resize_short=256,
resize=224,
normalize=True,
batch_size=1,
model_file='',
params_file='',
ir_optim=True,
gpu_mem=8000,
enable_profile=False,
top_k=1,
enable_mkldnn=False,
enable_benchmark=False,
cpu_num_threads=10,
hubserving=False,
label_name_path='',
pre_label_image=False,
pre_label_out_idr=None)
class PaddleClas(object):
print('Inference models that Paddle provides are listed as follows:\n\n{}'.
format(model_names), '\n')
def __init__(self, **kwargs):
process_params = parse_args(mMain=False, add_help=False)
process_params.__dict__.update(**kwargs)
if not os.path.exists(process_params.model_file):
if process_params.model_name is None:
raise Exception(
'Please input model name that you want to use!')
if process_params.model_name in model_names:
url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar'.format(
process_params.model_name)
if not os.path.exists(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)):
os.makedirs(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name))
download_path = os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)
maybe_download(model_storage_directory=download_path, url=url)
process_params.model_file = os.path.join(download_path,
'inference.pdmodel')
process_params.params_file = os.path.join(
download_path, 'inference.pdiparams')
process_params.label_name_path = os.path.join(
__dir__, 'ppcls/utils/imagenet1k_label_list.txt')
else:
raise Exception(
'If you want to use your own model, Please input model_file as model path!'
)
else:
print('Using user-specified model and params!')
print("process params are as follows: \n{}".format(process_params))
self.label_name_dict = load_label_name_dict(
process_params.label_name_path)
self.args = process_params
self.predictor = utils.create_paddle_predictor(process_params)
def predict(self, img):
"""
predict label of img with paddleclas
Args:
img: input image for clas, support single image , internet url, folder path containing series of images
Returns:
dict{image_name: "", class_id: [], scores: [], label_names: []}if label name path == Nonelabel_names will be empty.
"""
assert isinstance(img, (str, np.ndarray))
input_names = self.predictor.get_input_names()
input_tensor = self.predictor.get_input_handle(input_names[0])
output_names = self.predictor.get_output_names()
output_tensor = self.predictor.get_output_handle(output_names[0])
if isinstance(img, str):
# download internet image
if img.startswith('http'):
if not os.path.exists(BASE_IMAGES_DIR):
os.makedirs(BASE_IMAGES_DIR)
image_path = os.path.join(BASE_IMAGES_DIR, 'tmp.jpg')
download_with_progressbar(img, image_path)
print("Current using image from Internet:{}, renamed as: {}".
format(img, image_path))
img = image_path
image_list = utils.get_image_list(img)
else:
if isinstance(img, np.ndarray):
image_list = [img]
else:
print('Please input legal image!')
total_result = []
for filename in image_list:
if isinstance(filename, str):
image = cv2.imread(filename)[:, :, ::-1]
assert image is not None, "Error in loading image: {}".format(
filename)
inputs = utils.preprocess(image, self.args)
inputs = np.expand_dims(
inputs, axis=0).repeat(
1, axis=0).copy()
else:
inputs = filename
input_tensor.copy_from_cpu(inputs)
self.predictor.run()
outputs = output_tensor.copy_to_cpu()
classes, scores = utils.postprocess(outputs, self.args)
label_names = []
if len(self.label_name_dict) != 0:
label_names = [self.label_name_dict[c] for c in classes]
result = {
"filename": filename if isinstance(filename, str) else 'image',
"class_ids": classes.tolist(),
"scores": scores.tolist(),
"label_names": label_names,
}
total_result.append(result)
if self.args.pre_label_image:
save_prelabel_results(classes[0], filename,
self.args.pre_label_out_idr)
print("\tSaving prelabel results in {}".format(
os.path.join(self.args.pre_label_out_idr, str(classes[
0]))))
return total_result
def main():
# for cmd
args = parse_args(mMain=True)
clas_engine = PaddleClas(**(args.__dict__))
print('{}{}{}'.format('*' * 10, args.image_file, '*' * 10))
result = clas_engine.predict(args.image_file)
if result is not None:
print(result)
if __name__ == '__main__':
main()